메뉴 건너뛰기




Volumn 9908 LNCS, Issue , 2016, Pages 597-613

Deep reconstruction-classification networks for unsupervised domain adaptation

Author keywords

Convolutional networks; Deep learning; Domain adaptation; Object recognition; Transfer learning

Indexed keywords

BACKPROPAGATION; CLASSIFICATION (OF INFORMATION); CONVOLUTIONAL NEURAL NETWORKS; DEEP LEARNING; ENCODING (SYMBOLS); IMAGE CLASSIFICATION; TRANSFER LEARNING;

EID: 84990068644     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-46493-0_36     Document Type: Conference Paper
Times cited : (872)

References (57)
  • 1
    • 80052908300 scopus 로고    scopus 로고
    • Unbiased look at dataset bias
    • Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: CVPR, pp. 1521-1528 (2011)
    • (2011) CVPR , pp. 1521-1528
    • Torralba, A.1    Efros, A.A.2
  • 3
  • 4
    • 84959254588 scopus 로고    scopus 로고
    • Landmarks-based kernelized subspace alignment for unsupervised domain adaptation
    • Aljundi, R., Emonet, R., Muselet, D., Sebban, M.: Landmarks-based kernelized subspace alignment for unsupervised domain adaptation. In: CVPR (2015)
    • (2015) CVPR
    • Aljundi, R.1    Emonet, R.2    Muselet, D.3    Sebban, M.4
  • 5
    • 84898798212 scopus 로고    scopus 로고
    • Unsupervised domain adaptation by domain invariant projection
    • Baktashmotlagh, M., Harandi, M.T., Lovell, B.C., Salzmann, M.: Unsupervised domain adaptation by domain invariant projection. In: ICCV, pp. 769-776 (2013)
    • (2013) ICCV , pp. 769-776
    • Baktashmotlagh, M.1    Harandi, M.T.2    Lovell, B.C.3    Salzmann, M.4
  • 6
    • 77949852900 scopus 로고    scopus 로고
    • Domain adaptation problems: A DASVM classification technique and a circular validation strategy
    • Bruzzone, L., Marconcini, M.: Domain adaptation problems: a DASVM classification technique and a circular validation strategy. IEEE TPAMI 32(5), 770-787 (2010)
    • (2010) IEEE TPAMI , vol.32 , Issue.5 , pp. 770-787
    • Bruzzone, L.1    Marconcini, M.2
  • 7
    • 84897476317 scopus 로고    scopus 로고
    • Connecting the dots with landmarks: Discriminatively learning domain-invariant features for unsupervised domain adaptation
    • Gong, B., Grauman, K., Sha, F.: Connecting the dots with landmarks: discriminatively learning domain-invariant features for unsupervised domain adaptation. In: ICML (2013)
    • (2013) ICML
    • Gong, B.1    Grauman, K.2    Sha, F.3
  • 8
    • 84887338420 scopus 로고    scopus 로고
    • Transfer sparse coding for robust image representation
    • Long, M., Ding, G., Wang, J., Sun, J., Guo, Y., Yu, P.S.: Transfer sparse coding for robust image representation. In: CVPR, pp. 404-414 (2013)
    • (2013) CVPR , pp. 404-414
    • Long, M.1    Ding, G.2    Wang, J.3    Sun, J.4    Guo, Y.5    Yu, P.S.6
  • 9
    • 84911456577 scopus 로고    scopus 로고
    • Transfer joint matching for unsupervised domain adaptation
    • Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer joint matching for unsupervised domain adaptation. In: CVPR, pp. 1410-1417 (2014)
    • (2014) CVPR , pp. 1410-1417
    • Long, M.1    Wang, J.2    Ding, G.3    Sun, J.4    Yu, P.S.5
  • 10
  • 11
    • 78149318752 scopus 로고    scopus 로고
    • Adapting visual category models to new domains
    • Daniilidis, K., Maragos, P., Paragios, N. (eds.), Springer, Heidelberg
    • Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213-226. Springer, Heidelberg (2010). doi:10.1007/ 978-3-642-15561-1_16
    • (2010) ECCV 2010. LNCS , vol.6314 , pp. 213-226
    • Saenko, K.1    Kulis, B.2    Fritz, M.3    Darrell, T.4
  • 12
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • Caruana, R.: Multitask learning. Mach. Learn. 28, 41-75 (1997)
    • (1997) Mach. Learn , vol.28 , pp. 41-75
    • Caruana, R.1
  • 13
    • 84864063089 scopus 로고    scopus 로고
    • Multi-task feature learning
    • Schölkopf, B., Platt, J., Hoffman, T. (eds.), MIT Press, Cambridge
    • Argyriou, A., Evgeniou, T., Pontil, M.: Multi-task feature learning. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information Processing Systems, vol. 19, pp. 41-48. MIT Press, Cambridge (2006)
    • (2006) Advances in Neural Information Processing Systems , vol.19 , pp. 41-48
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 14
    • 84878919540 scopus 로고    scopus 로고
    • Classification with deep convolutional neural networks
    • Krizhevsky, A., Sutskever, I., Hinton, G.E.: Classification with deep convolutional neural networks. In: NIPS, vol. 25, pp. 1106-1114 (2012)
    • (2012) NIPS , vol.25 , pp. 1106-1114
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 15
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 16
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E., Osindero, S.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527-1554 (2006)
    • (2006) Neural Comput , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2
  • 17
    • 84864073449 scopus 로고    scopus 로고
    • Greedy Layer-Wise training of deep networks
    • Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy Layer-Wise training of deep networks. In: NIPS, vol. 19, pp. 153-160 (2007)
    • (2007) NIPS , vol.19 , pp. 153-160
    • Bengio, Y.1    Lamblin, P.2    Popovici, D.3    Larochelle, H.4
  • 18
    • 84969802531 scopus 로고    scopus 로고
    • Unsupervised domain adaptation by backpropagation
    • Ganin, Y., Lempitsky, V.S.: Unsupervised domain adaptation by backpropagation. In: ICML, pp. 1180-1189 (2015)
    • (2015) ICML , pp. 1180-1189
    • Ganin, Y.1    Lempitsky, V.S.2
  • 19
    • 34547975610 scopus 로고    scopus 로고
    • Risks of semi-supervised learning: How unlabeled data can degrade performance of generative classifiers
    • MIT Press
    • Cohen, I., Cozman, F.G.: Risks of semi-supervised learning: how unlabeled data can degrade performance of generative classifiers. In: Semi-Supervised Learning. MIT Press (2006)
    • (2006) Semi-Supervised Learning
    • Cohen, I.1    Cozman, F.G.2
  • 20
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: A systematic study
    • Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study. Intell. Data Anal. 6(5), 429-450 (2002)
    • (2002) Intell. Data Anal , vol.6 , Issue.5 , pp. 429-450
    • Japkowicz, N.1    Stephen, S.2
  • 21
    • 0037527188 scopus 로고    scopus 로고
    • Improving predictive inference under covariate shift by weighting the log-likelihood function
    • Shimodaira, H.: Improving predictive inference under covariate shift by weighting the log-likelihood function. J. Stat. Plann. Infer. 90(2), 227-244 (2000)
    • (2000) J. Stat. Plann. Infer , vol.90 , Issue.2 , pp. 227-244
    • Shimodaira, H.1
  • 23
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345-1359 (2010)
    • (2010) IEEE Trans. Knowl. Data Eng , vol.22 , Issue.10 , pp. 1345-1359
    • Pan, S.J.1    Yang, Q.2
  • 25
    • 84860513476 scopus 로고    scopus 로고
    • Frustratingly easy domain adaptation
    • Daumé, H, III: Frustratingly easy domain adaptation. In: Proceedings of ACL (2007)
    • (2007) Proceedings of ACL
    • Daumé, H.1
  • 26
    • 84885920922 scopus 로고    scopus 로고
    • A literature review of domain adaptation with unlabeled data
    • University of Washington
    • Margolis, A.: A literature review of domain adaptation with unlabeled data. Technical report, University of Washington (2011)
    • (2011) Technical Report
    • Margolis, A.1
  • 27
    • 84898798531 scopus 로고    scopus 로고
    • Unsupervised visual domain adaptation using subspace alignment
    • Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T.: Unsupervised visual domain adaptation using subspace alignment. In: ICCV, pp. 2960-2967 (2013)
    • (2013) ICCV , pp. 2960-2967
    • Fernando, B.1    Habrard, A.2    Sebban, M.3    Tuytelaars, T.4
  • 28
    • 84990043086 scopus 로고    scopus 로고
    • Scatter component analysis: A unified framework for domain adaptation and domain generalization
    • Ghifary, M., Balduzzi, D., Kleijn, W.B., Zhang, M.: Scatter component analysis: a unified framework for domain adaptation and domain generalization. CoRR abs/1510.04373 (2015)
    • (2015) Corr Abs/1510 , pp. 04373
    • Ghifary, M.1    Balduzzi, D.2    Kleijn, W.B.3    Zhang, M.4
  • 29
    • 84863396387 scopus 로고    scopus 로고
    • Domain adaptation for object recognition: An unsupervised approach
    • Gopalan, R., Li, R., Chellapa, R.: Domain adaptation for object recognition: an unsupervised approach. In: ICCV, pp. 999-1006 (2011)
    • (2011) ICCV , pp. 999-1006
    • Gopalan, R.1    Li, R.2    Chellapa, R.3
  • 30
    • 84866657270 scopus 로고    scopus 로고
    • Geodesic flow Kernel for unsupervised domain adaptation
    • Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow Kernel for unsupervised domain adaptation. In: CVPR, pp. 2066-2073 (2012)
    • (2012) CVPR , pp. 2066-2073
    • Gong, B.1    Shi, Y.2    Sha, F.3    Grauman, K.4
  • 31
    • 43049174575 scopus 로고    scopus 로고
    • SURF: Speeded up robust features
    • Bay, H., Tuytelaars, T., Gool, L.V.: SURF: speeded up robust features. CVIU 110(3), 346-359 (2008)
    • (2008) CVIU , vol.110 , Issue.3 , pp. 346-359
    • Bay, H.1    Tuytelaars, T.2    Gool, L.V.3
  • 32
    • 80053443013 scopus 로고    scopus 로고
    • Domain adaptation for large-scale sentiment classification: A deep learning approach
    • Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment classification: a deep learning approach. In: ICML, pp. 513-520 (2011)
    • (2011) ICML , pp. 513-520
    • Glorot, X.1    Bordes, A.2    Bengio, Y.3
  • 33
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371-3408 (2010)
    • (2010) J. Mach. Learn. Res , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.A.5
  • 34
    • 84911933603 scopus 로고    scopus 로고
    • Domain adaptive neural networks for object recognition
    • Pham, D.-N., Park, S.-B. (eds.), Springer, Heidelberg
    • Ghifary, M., Kleijn, W.B., Zhang, M.: Domain adaptive neural networks for object recognition. In: Pham, D.-N., Park, S.-B. (eds.) PRICAI 2014. LNCS (LNAI), vol. 8862, pp. 898-904. Springer, Heidelberg (2014). doi:10.1007/978-3-319-13560-1_76
    • (2014) PRICAI 2014. LNCS (LNAI) , vol.8862 , pp. 898-904
    • Ghifary, M.1    Kleijn, W.B.2    Zhang, M.3
  • 35
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278-2324 (1998)
    • (1998) Proc. IEEE , vol.86 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 36
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 40
    • 84969549144 scopus 로고    scopus 로고
    • Learning transferable features with deep adaptation networks
    • Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. In: ICML (2015)
    • (2015) ICML
    • Long, M.1    Cao, Y.2    Wang, J.3    Jordan, M.I.4
  • 42
    • 84973897613 scopus 로고    scopus 로고
    • Simultaneous deep transfer across domains and tasks
    • Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous deep transfer across domains and tasks. In: ICCV (2015)
    • (2015) ICCV
    • Tzeng, E.1    Hoffman, J.2    Darrell, T.3    Saenko, K.4
  • 44
    • 79959353548 scopus 로고    scopus 로고
    • Stacked convolutional autoencoders for hierarchical feature extraction
    • Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.), Springer, Heidelberg
    • Masci, J., Meier, U., Ciręsan, D., Schmidhuber, J.: Stacked convolutional autoencoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 52-59. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21735-7_7
    • (2011) ICANN 2011. LNCS , vol.6791 , pp. 52-59
    • Masci, J.1    Meier, U.2    Ciręsan, D.3    Schmidhuber, J.4
  • 49
    • 84945900998 scopus 로고    scopus 로고
    • Best practices for convolutional neural networks applied to visual document analysis
    • Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: ICDAR, vol. 2, pp. 958-962 (2003)
    • (2003) ICDAR , vol.2 , pp. 958-962
    • Simard, P.Y.1    Steinkraus, D.2    Platt, J.C.3
  • 50
    • 0028428774 scopus 로고
    • A database for handwritten text recognition research
    • Hull, J.J.: A database for handwritten text recognition research. IEEE TPAMI 16(5), 550-554 (1994)
    • (1994) IEEE TPAMI , vol.16 , Issue.5 , pp. 550-554
    • Hull, J.J.1
  • 53
    • 84862283411 scopus 로고    scopus 로고
    • An analysis of single-layer networks in unsupervised feature learning
    • Coates, A., Lee, H., Ng, A.Y.: An analysis of single-layer networks in unsupervised feature learning. In: AISTATS, pp. 215-223 (2011)
    • (2011) AISTATS , pp. 215-223
    • Coates, A.1    Lee, H.2    Ng, A.Y.3
  • 54
    • 84874575248 scopus 로고    scopus 로고
    • Convolutional neural networks applied to house number digit classification
    • Sermanet, P., Chintala, S., LeCun, Y.: Convolutional neural networks applied to house number digit classification. In: ICPR, pp. 3288-3291 (2012)
    • (2012) ICPR , pp. 3288-3291
    • Sermanet, P.1    Chintala, S.2    Lecun, Y.3
  • 55
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted Boltzmann machines
    • Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML (2010)
    • (2010) ICML
    • Nair, V.1    Hinton, G.E.2
  • 56
    • 0002644952 scopus 로고
    • Maximum likelihood estimation of misspecified models
    • White, H.: Maximum likelihood estimation of misspecified models. Econometrica 50(1), 1-25 (1982)
    • (1982) Econometrica , vol.50 , Issue.1 , pp. 1-25
    • White, H.1
  • 57
    • 84899017362 scopus 로고    scopus 로고
    • Generalized denoising autoencoders as generative models
    • Bengio, Y., Yao, L., Guillaume, A., Vincent, P.: Generalized denoising autoencoders as generative models. In: NIPS, pp. 899-907 (2013)
    • (2013) NIPS , pp. 899-907
    • Bengio, Y.1    Yao, L.2    Guillaume, A.3    Vincent, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.