메뉴 건너뛰기




Volumn , Issue PART 1, 2013, Pages 222-230

Connecting the dots with landmarks: Discriminatively learning domain-invariant features for unsupervised domain adaptation

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; SOFTWARE ENGINEERING;

EID: 84897476317     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (523)

References (29)
  • 3
    • 85161970767 scopus 로고    scopus 로고
    • Exploiting weakly-labeled web images to improve object classification: A domain adaptation approach
    • Bergamo, A. and Torresani, L. Exploiting weakly-labeled web images to improve object classification: a domain adaptation approach. In NIPS, 2010.
    • (2010) NIPS
    • Bergamo, A.1    Torresani, L.2
  • 4
    • 80053342456 scopus 로고    scopus 로고
    • Domain adaptation with structural correspondence learning
    • Blitzer, J., McDonald, R., and Pereira, F. Domain adaptation with structural correspondence learning. In EMNLP, 2006.
    • (2006) EMNLP
    • Blitzer, J.1    McDonald, R.2    Pereira, F.3
  • 5
    • 84860524227 scopus 로고    scopus 로고
    • Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification
    • Blitzer, J., Dredze, M., and Pereira, F. Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In ACL, 2007.
    • (2007) ACL
    • Blitzer, J.1    Dredze, M.2    Pereira, F.3
  • 6
    • 84867138579 scopus 로고    scopus 로고
    • Domain adaptation with coupled subspaces
    • Blitzer, J., Foster, D., and Kakade, S. Domain adaptation with coupled subspaces. In AISTATS, 2011.
    • (2011) AISTATS
    • Blitzer, J.1    Foster, D.2    Kakade, S.3
  • 8
    • 84860513476 scopus 로고    scopus 로고
    • Frustratingly easy domain adaptation
    • Daumé, H. Frustratingly easy domain adaptation. In ACL, 2007.
    • (2007) ACL
    • Daumé, H.1
  • 10
    • 85162030733 scopus 로고    scopus 로고
    • Co-regularization based semi-supervised domain adaptation
    • Daumé, H., Kumar, A., and Saha, A. Co-regularization based semi-supervised domain adaptation. In NIPS, 2010.
    • (2010) NIPS
    • Daumé, H.1    Kumar, A.2    Saha, A.3
  • 12
    • 84866657270 scopus 로고    scopus 로고
    • Geodesic flow kernel for unsupervised domain adaptation
    • Gong, B., Shi, Y., Sha, F., and Grauman, K. Geodesic flow kernel for unsupervised domain adaptation. In CVPR, 2012.
    • (2012) CVPR
    • Gong, B.1    Shi, Y.2    Sha, F.3    Grauman, K.4
  • 13
    • 84863396387 scopus 로고    scopus 로고
    • Domain adaptation for object recognition: An unsupervised approach
    • Gopalan, R., Li, R., and Chellappa, R. Domain adaptation for object recognition: An unsupervised approach. In ICCV, 2011.
    • (2011) ICCV
    • Gopalan, R.1    Li, R.2    Chellappa, R.3
  • 15
    • 70349847999 scopus 로고    scopus 로고
    • Covariate shift by kernel mean matching
    • Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., and Lawrence, N.D. (eds.), MIT Press
    • Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., and Scholkopf, B. Covariate shift by kernel mean matching. In Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., and Lawrence, N.D. (eds.), Dataset Shift in Machine Learning. MIT Press, 2009.
    • (2009) Dataset Shift in Machine Learning
    • Gretton, A.1    Smola, A.2    Huang, J.3    Schmittfull, M.4    Borgwardt, K.5    Scholkopf, B.6
  • 18
    • 80052895155 scopus 로고    scopus 로고
    • What you saw is not what you get: Domain adaptation using asymmetric kernel transforms
    • Kulis, B., Saenko, K., and Darrell, T. What you saw is not what you get: Domain adaptation using asymmetric kernel transforms. In CVPR, 2011.
    • (2011) CVPR
    • Kulis, B.1    Saenko, K.2    Darrell, T.3
  • 20
    • 84898072330 scopus 로고    scopus 로고
    • Domain adaptation: Learning bounds and algorithms
    • Mansour, Y., Mohri, M., and Rostamizadeh, A. Domain adaptation: Learning bounds and algorithms. In COLT, 2009a.
    • (2009) COLT
    • Mansour, Y.1    Mohri, M.2    Rostamizadeh, A.3
  • 21
    • 71049149704 scopus 로고    scopus 로고
    • Multiple source adaptation and the rényi divergence
    • Mansour, Y., Mohri, M., and Rostamizadeh, A. Multiple source adaptation and the rényi divergence. In UAI, 2009b.
    • (2009) UAI
    • Mansour, Y.1    Mohri, M.2    Rostamizadeh, A.3
  • 22
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • Pan, S.J. and Yang, Q. A survey on transfer learning. Knowledge and Data Engineering, 22(10):1345-1359, 2010.
    • (2010) Knowledge and Data Engineering , vol.22 , Issue.10 , pp. 1345-1359
    • Pan, S.J.1    Yang, Q.2
  • 23
    • 84876722484 scopus 로고    scopus 로고
    • Domain adaptation via transfer component analysis
    • Pan, S.J., Tsang, I.W., Kwok, J.T., and Yang, Q. Domain adaptation via transfer component analysis. IEEE Trans. NN, (99):1-12, 2009.
    • (2009) IEEE Trans. NN , Issue.99 , pp. 1-12
    • Pan, S.J.1    Tsang, I.W.2    Kwok, J.T.3    Yang, Q.4
  • 24
    • 77956008923 scopus 로고    scopus 로고
    • Large-scale image categorization with explicit data embedding
    • Perronnin, F., Senchez, J., and Liu, Y. Large-scale image categorization with explicit data embedding. In CVPR, 2010.
    • (2010) CVPR
    • Perronnin, F.1    Senchez, J.2    Liu, Y.3
  • 26
    • 39749186006 scopus 로고    scopus 로고
    • LabelMe: A database and web-based tool for image annotation
    • Russell, B. C., Torralba, A., Murphy, K. P., and Freeman, W. T. LabelMe: a database and web-based tool for image annotation. IJCV, 77:157-173, 2008.
    • (2008) IJCV , vol.77 , pp. 157-173
    • Russell, B.C.1    Torralba, A.2    Murphy, K.P.3    Freeman, W.T.4
  • 27
    • 78149301639 scopus 로고    scopus 로고
    • Adapting visual category models to new domains
    • Saenko, K., Kulis, B., Fritz, M., and Darrell, T. Adapting visual category models to new domains. In ECCV, 2010.
    • (2010) ECCV
    • Saenko, K.1    Kulis, B.2    Fritz, M.3    Darrell, T.4
  • 28
    • 0037527188 scopus 로고    scopus 로고
    • Improving predictive inference under covariate shift by weighting the log-likelihood function
    • Shimodaira, H. Improving predictive inference under covariate shift by weighting the log-likelihood function. Journal of Statistical Planning and Inference, 90(2):227-244, 2000.
    • (2000) Journal of Statistical Planning and Inference , vol.90 , Issue.2 , pp. 227-244
    • Shimodaira, H.1
  • 29
    • 80052908300 scopus 로고    scopus 로고
    • Unbiased look at dataset bias
    • Torralba, A. and Efros, A.A. Unbiased look at dataset bias. In CVPR, 2011.
    • (2011) CVPR
    • Torralba, A.1    Efros, A.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.