메뉴 건너뛰기




Volumn 2, Issue , 2015, Pages 1180-1189

Unsupervised domain adaptation by backpropagation

Author keywords

[No Author keywords available]

Indexed keywords

ARCHITECTURE; ARTIFICIAL INTELLIGENCE; BACKPROPAGATION; CLASSIFICATION (OF INFORMATION); IMAGE CLASSIFICATION; LEARNING SYSTEMS;

EID: 84969802531     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (6309)

References (35)
  • 2
    • 79953048649 scopus 로고    scopus 로고
    • Contour detection and hierarchical image segmentation
    • Arbelaez, Pablo, Maire, Michael, Fowlkes, Charless, and Malik, Jitendra. Contour detection and hierarchical image segmentation. PAMI, 33, 2011.
    • (2011) PAMI , vol.33
    • Arbelaez, P.1    Maire, M.2    Fowlkes, C.3    Malik, J.4
  • 4
    • 84898798212 scopus 로고    scopus 로고
    • Unsupervised domain adaptation by domain invariant projection
    • Baktashmotlagh, Mahsa, Harandi, Mehrtash Tafazzoli, Lovell, Brian C., and Salzmann, Mathieu. Unsupervised domain adaptation by domain invariant projection. In ICCV, pp. 769-776, 2013.
    • (2013) ICCV , pp. 769-776
    • Baktashmotlagh, M.1    Harandi, M.T.2    Lovell, B.C.3    Salzmann, M.4
  • 6
    • 33747886323 scopus 로고    scopus 로고
    • Integrating structured biological data by kernel maximum mean discrepancy
    • Borgwardt, Karsten M., Gretton, Arthur, Rasch, Malte J., Kriegel, Hans-Peter, Schölkopf, Bernhard, and Smola, Alexander J. Integrating structured biological data by kernel maximum mean discrepancy. In ISMB, pp. 49-57, 2006.
    • (2006) ISMB , pp. 49-57
    • Borgwardt, K.M.1    Gretton, A.2    Rasch, M.J.3    Kriegel, H.-P.4    Schölkopf, B.5    Smola, A.J.6
  • 11
    • 84898798531 scopus 로고    scopus 로고
    • Unsupervised visual domain adaptation using subspace alignment
    • Fernando, Basura, Habrard, Amaury, Sebban, Marc, and Tuytelaars, Tinne. Unsupervised visual domain adaptation using subspace alignment. In ICCV, 2013.
    • (2013) ICCV
    • Fernando, B.1    Habrard, A.2    Sebban, M.3    Tuytelaars, T.4
  • 12
    • 84959358287 scopus 로고    scopus 로고
    • [Online; accessed 25-May-2015]
    • Ganin, Yaroslav and Lempitsky, Victor. Project website. http://sites.skoltech.ru/compvision/pro jects/grl/, 2015. [Online; accessed 25-May-2015].
    • (2015) Project Website
    • Ganin, Y.1    Lempitsky, V.2
  • 13
    • 80053443013 scopus 로고    scopus 로고
    • Domain adaptation for large-scale sentiment classification: A deep learning approach
    • Glorot, Xavier, Bordes, Antoine, and Bengio, Yoshua. Domain adaptation for large-scale sentiment classification: A deep learning approach. In ICML, pp. 513-520, 2011.
    • (2011) ICML , pp. 513-520
    • Glorot, X.1    Bordes, A.2    Bengio, Y.3
  • 14
    • 84866657270 scopus 로고    scopus 로고
    • Geodesic flow kernel for unsupervised domain adaptation
    • Gong, Boqing, Shi, Yuan, Sha, Fei, and Grauman, Kristen. Geodesic flow kernel for unsupervised domain adaptation. In CVPR, pp. 2066-2073, 2012.
    • (2012) CVPR , pp. 2066-2073
    • Gong, B.1    Shi, Y.2    Sha, F.3    Grauman, K.4
  • 15
    • 84897476317 scopus 로고    scopus 로고
    • Connecting the dots with landmarks: Discriminatively learning domain-invariant features for unsupervised domain adaptation
    • Gong, Boqing, Grauman, Kristen, and Sha, Fei. Connecting the dots with landmarks: Discriminatively learning domain-invariant features for unsupervised domain adaptation. In ICML, pp. 222-230, 2013.
    • (2013) ICML , pp. 222-230
    • Gong, B.1    Grauman, K.2    Sha, F.3
  • 17
    • 84863396387 scopus 로고    scopus 로고
    • Domain adaptation for object recognition: An unsupervised approach
    • Gopalan, Raghuraman, Li, Ruonan, and Chellappa, Rama. Domain adaptation for object recognition: An unsupervised approach. In ICCV, pp. 999-1006, 2011.
    • (2011) ICCV , pp. 999-1006
    • Gopalan, R.1    Li, R.2    Chellappa, R.3
  • 19
    • 84864031047 scopus 로고    scopus 로고
    • Correcting sample selection bias by unlabeled data
    • Huang, Jiayuan, Smola, Alexander J., Gretton, Arthur, Borgwardt, Karsten M., and Schölkopf, Bernhard. Correcting sample selection bias by unlabeled data. In NIPS, pp. 601-608, 2006.
    • (2006) NIPS , pp. 601-608
    • Huang, J.1    Smola, A.J.2    Gretton, A.3    Borgwardt, K.M.4    Schölkopf, B.5
  • 21
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • November
    • Le Cun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, November 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Le Cun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 22
    • 77955993906 scopus 로고    scopus 로고
    • Multi-view object class detection with a 3d geometric model
    • Liebelt, Joerg and Schmid, Cordelia. Multi-view object class detection with a 3d geometric model. In CVPR, 2010.
    • (2010) CVPR
    • Liebelt, J.1    Schmid, C.2
  • 25
    • 84911449395 scopus 로고    scopus 로고
    • Learning and transferring mid-level image representations using convolutional neural networks
    • Oquab, M., Bottou, L., Laptev, I., and Sivic, J. Learning and transferring mid-level image representations using convolutional neural networks. In CVPR, 2014.
    • (2014) CVPR
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 28
    • 78149318752 scopus 로고    scopus 로고
    • Adapting visual category models to new domains
    • Saenko, Kate, Kulis, Brian, Fritz, Mario, and Darrell, Trevor. Adapting visual category models to new domains. In ECCV, pp. 213-226. 2010.
    • (2010) ECCV , pp. 213-226
    • Saenko, K.1    Kulis, B.2    Fritz, M.3    Darrell, T.4
  • 29
    • 0037527188 scopus 로고    scopus 로고
    • Improving predictive inference under covariate shift by weighting the log-likelihood function
    • October
    • Shimodaira, Hidetoshi. Improving predictive inference under covariate shift by weighting the log-likelihood function. Journal of Statistical Planning and Inference, 90 (2):227-244, October 2000.
    • (2000) Journal of Statistical Planning and Inference , vol.90 , Issue.2 , pp. 227-244
    • Shimodaira, H.1
  • 30
    • 84898454739 scopus 로고    scopus 로고
    • Back to the future: Learning shape models from 3d CAD data
    • Stark, Michael, Goesele, Michael, and Schiele, Bernt. Back to the future: Learning shape models from 3d CAD data. In BMVC, pp. 1-11,2010.
    • (2010) BMVC , pp. 1-11
    • Stark, M.1    Goesele, M.2    Schiele, B.3
  • 31
    • 85031103438 scopus 로고    scopus 로고
    • From virtual to reality: Fast adaptation of virtual object detectors to real domains
    • Sun, Baochen and Saenko, Kate. From virtual to reality: Fast adaptation of virtual object detectors to real domains. In BMVC, 2014.
    • (2014) BMVC
    • Sun, B.1    Saenko, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.