-
1
-
-
84906483885
-
Context as supervisory signal: Discovering objects with predictable context
-
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
-
Doersch, C., Gupta, A., Efros, A.A.: Context as supervisory signal: discovering objects with predictable context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 362-377. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10578-9-24
-
(2014)
ECCV 2014. LNCS
, vol.8691
, pp. 362-377
-
-
Doersch, C.1
Gupta, A.2
Efros, A.A.3
-
2
-
-
84973916088
-
Unsupervised visual representation learning by context prediction
-
Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: ICCV (2015)
-
(2015)
ICCV
-
-
Doersch, C.1
Gupta, A.2
Efros, A.A.3
-
3
-
-
84973889989
-
Unsupervised learning of visual representations using videos
-
Wang, X., Gupta, A.: Unsupervised learning of visual representations using videos. In: ICCV (2015)
-
(2015)
ICCV
-
-
Wang, X.1
Gupta, A.2
-
4
-
-
84973902378
-
Unsupervised learning of spatiotemporally coherent metrics
-
Goroshin, R., Bruna, J., Tompson, J., Eigen, D., LeCun, Y.: Unsupervised learning of spatiotemporally coherent metrics. In: ICCV (2015)
-
(2015)
ICCV
-
-
Goroshin, R.1
Bruna, J.2
Tompson, J.3
Eigen, D.4
Lecun, Y.5
-
5
-
-
84877777295
-
Deep learning of invariant features via simulated fixations in video
-
Zou, W.Y., Zhu, S., Ng, A.Y., Yu, K.: Deep learning of invariant features via simulated fixations in video. In: NIPS (2012)
-
(2012)
NIPS
-
-
Zou, W.Y.1
Zhu, S.2
Ng, A.Y.3
Yu, K.4
-
6
-
-
84986249794
-
Unsupervised learning of edges
-
Li, Y., Paluri, M., Rehg, J.M., Dollar, P.: Unsupervised learning of edges. In: CVPR (2016)
-
(2016)
CVPR
-
-
Li, Y.1
Paluri, M.2
Rehg, J.M.3
Dollar, P.4
-
7
-
-
84973880490
-
Dense optical flow prediction from a static image
-
Walker, J., Gupta, A., Hebert, M.: Dense optical flow prediction from a static image. In: ICCV (2015)
-
(2015)
ICCV
-
-
Walker, J.1
Gupta, A.2
Hebert, M.3
-
8
-
-
84990049823
-
Shuffle and learn: Unsupervised learning using temporal order verification
-
Misra, I., Zitnick, C.L., Hebert, M.: Shuffle and learn: unsupervised learning using temporal order verification. In: ECCV (2016)
-
(2016)
ECCV
-
-
Misra, I.1
Zitnick, C.L.2
Hebert, M.3
-
9
-
-
84937849144
-
Generative adversarial nets
-
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: NIPS (2014)
-
(2014)
NIPS
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
10
-
-
85083952489
-
Auto-encoding variational bayes
-
Kingma, D., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014)
-
(2014)
ICLR
-
-
Kingma, D.1
Welling, M.2
-
11
-
-
84965100881
-
-
CoRR abs/1502.04623
-
Gregor, K., Danihelka, I., Graves, A., Rezende, D.J., Wierstra, D.: Draw: a recurrent neural network for image generation. CoRR abs/1502.04623 (2015)
-
(2015)
Draw: A Recurrent Neural Network for Image Generation
-
-
Gregor, K.1
Danihelka, I.2
Graves, A.3
Rezende, D.J.4
Wierstra, D.5
-
12
-
-
84970016114
-
Generative moment matching networks
-
Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: ICML (2014)
-
(2014)
ICML
-
-
Li, Y.1
Swersky, K.2
Zemel, R.3
-
14
-
-
84867713871
-
Indoor segmentation and support inference from RGBD images
-
Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.), Springer, Heidelberg
-
Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746-760. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33715-4-54
-
(2012)
ECCV 2012. LNCS
, vol.7576
, pp. 746-760
-
-
Silberman, N.1
Hoiem, D.2
Kohli, P.3
Fergus, R.4
-
16
-
-
84973897623
-
Learning image representations tied to ego-motion
-
Jayaraman, D., Grauman, K.: Learning image representations tied to ego-motion. In: ICCV (2015)
-
(2015)
ICCV
-
-
Jayaraman, D.1
Grauman, K.2
-
17
-
-
84986249782
-
Visually indicated sounds
-
Owens, A., Isola, P., McDermott, J., Torralba, A., Adelson, E., Freeman, W.: Visually indicated sounds. In: CVPR (2016)
-
(2016)
CVPR
-
-
Owens, A.1
Isola, P.2
McDermott, J.3
Torralba, A.4
Adelson, E.5
Freeman, W.6
-
18
-
-
84977599666
-
Supersizing self-supervision: Learning to grasp from 50 k tries and 700 robot hours
-
Pinto, L., Gupta, A.: Supersizing self-supervision: learning to grasp from 50 k tries and 700 robot hours. In: ICRA (2016)
-
(2016)
ICRA
-
-
Pinto, L.1
Gupta, A.2
-
19
-
-
84990042430
-
The curious robot: Learning visual representations via physical interactions
-
Pinto, L., Gandhi, D., Han, Y., Park, Y.L., Gupta, A.: The curious robot: learning visual representations via physical interactions. In: ECCV (2016)
-
(2016)
ECCV
-
-
Pinto, L.1
Gandhi, D.2
Han, Y.3
Park, Y.L.4
Gupta, A.5
-
20
-
-
0033285309
-
Texture synthesis by non-parametric sampling
-
Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: ICCV (1999)
-
(1999)
ICCV
-
-
Efros, A.A.1
Leung, T.K.2
-
22
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: NIPS (2007)
-
(2007)
NIPS
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
23
-
-
84867135575
-
Building high-level features using large scale unsupervised learning
-
Le, Q.V., Ranzato, M.A., Monga, R., Devin, M., Chen, K., Corrado, G.S., Dean, J., Ng, A.Y.: Building high-level features using large scale unsupervised learning. In: ICML (2012)
-
(2012)
ICML
-
-
Le, Q.V.1
Ranzato, M.A.2
Monga, R.3
Devin, M.4
Chen, K.5
Corrado, G.S.6
Dean, J.7
Ng, A.Y.8
-
24
-
-
84879850729
-
Factored 3-way restricted Boltzmann machines for modeling natural images
-
Ranzato, M.A., Krizhevsky, A., Hinton, G.E.: Factored 3-way restricted Boltzmann machines for modeling natural images. In: AISTATS (2010)
-
(2010)
AISTATS
-
-
Ranzato, M.A.1
Krizhevsky, A.2
Hinton, G.E.3
-
25
-
-
85161976678
-
Modeling image patches with a directed hierarchy of Markov random fields
-
Osindero, S., Hinton, G.E.: Modeling image patches with a directed hierarchy of Markov random fields. In: NIPS (2008)
-
(2008)
NIPS
-
-
Osindero, S.1
Hinton, G.E.2
-
26
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313, 504-507 (2006)
-
(2006)
Science
, vol.313
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
27
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: ICML (2009)
-
(2009)
ICML
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
28
-
-
85157999846
-
Modeling human motion using binary latent variables
-
Taylor, G.W., Hinton, G.E., Roweis, S.: Modeling human motion using binary latent variables. In: NIPS (2006)
-
(2006)
NIPS
-
-
Taylor, G.W.1
Hinton, G.E.2
Roweis, S.3
-
29
-
-
84990025533
-
-
CoRR abs/1511.02793
-
Mansimov, E., Parisotto, E., Ba, J.L., Salakhutdinov, R.: Generating images from captions with attention. CoRR abs/1511.02793 (2015)
-
(2015)
Generating Images from Captions with Attention
-
-
Mansimov, E.1
Parisotto, E.2
Ba, J.L.3
Salakhutdinov, R.4
-
30
-
-
84965156877
-
Deep convolutional inverse graphics network
-
Kulkarni, T.D., Whitney, W.F., Kohli, P., Tenenbaum, J.B.: Deep convolutional inverse graphics network. In: NIPS (2015)
-
(2015)
NIPS
-
-
Kulkarni, T.D.1
Whitney, W.F.2
Kohli, P.3
Tenenbaum, J.B.4
-
31
-
-
84959184995
-
Learning to generate chairs with convolutional neural networks
-
Dosovitskiy, A., Springenberg, J.T., Brox, T.: Learning to generate chairs with convolutional neural networks. In: CVPR (2015)
-
(2015)
CVPR
-
-
Dosovitskiy, A.1
Springenberg, J.T.2
Brox, T.3
-
35
-
-
84965143571
-
Deep generative image models using a laplacian pyramid of adversarial networks
-
Denton, E., Chintala, S., Szlam, A., Fergus, R.: Deep generative image models using a laplacian pyramid of adversarial networks. In: NIPS (2015)
-
(2015)
NIPS
-
-
Denton, E.1
Chintala, S.2
Szlam, A.3
Fergus, R.4
-
38
-
-
84990051624
-
-
CoRR abs/1602.05110
-
Im, D.J., Kim, C.D., Jiang, H., Memisevic, R.: Generating images with recurrent adversarial networks. CoRR abs/1602.05110 (2016)
-
(2016)
Generating Images with Recurrent Adversarial Networks
-
-
Im, D.J.1
Kim, C.D.2
Jiang, H.3
Memisevic, R.4
-
39
-
-
84959234840
-
Designing deep networks for surface normal estimation
-
Wang, X., Fouhey, D.F., Gupta, A.: Designing deep networks for surface normal estimation. In: CVPR (2015)
-
(2015)
CVPR
-
-
Wang, X.1
Fouhey, D.F.2
Gupta, A.3
-
40
-
-
84973897611
-
Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture
-
Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: ICCV (2015)
-
(2015)
ICCV
-
-
Eigen, D.1
Fergus, R.2
-
41
-
-
84898832490
-
Data-driven 3D primitives for single image understanding
-
Fouhey, D.F., Gupta, A., Hebert, M.: Data-driven 3D primitives for single image understanding. In: ICCV (2013)
-
(2013)
ICCV
-
-
Fouhey, D.F.1
Gupta, A.2
Hebert, M.3
-
42
-
-
84906517298
-
Discriminatively trained dense surface normal estimation
-
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
-
Ladickỳ, L., Zeisl, B., Pollefeys, M.: Discriminatively trained dense surface normal estimation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 468-484. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10602-1_31
-
(2014)
ECCV 2014. LNCS
, vol.8693
, pp. 468-484
-
-
Ladickỳ, L.1
Zeisl, B.2
Pollefeys, M.3
-
43
-
-
84987948522
-
-
CoRR abs/1511.05644
-
Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I.J.: Adversarial autoencoders. CoRR abs/1511.05644 (2015)
-
(2015)
Adversarial Autoencoders
-
-
Makhzani, A.1
Shlens, J.2
Jaitly, N.3
Goodfellow, I.J.4
-
48
-
-
84973888903
-
Single image 3D without a single 3D image
-
Fouhey, D.F., Hussain, W., Gupta, A., Hebert, M.: Single image 3D without a single 3D image. In: ICCV (2015)
-
(2015)
ICCV
-
-
Fouhey, D.F.1
Hussain, W.2
Gupta, A.3
Hebert, M.4
-
49
-
-
0032025550
-
Filters, random fields and maximum entropy (Frame): Towards a unified theory for texture modeling
-
Zhu, S.C., Wu, Y.N., Mumford, D.: Filters, random fields and maximum entropy (frame): towards a unified theory for texture modeling. In: IJCV (1998)
-
(1998)
IJCV
-
-
Zhu, S.C.1
Wu, Y.N.2
Mumford, D.3
-
51
-
-
84893676344
-
Rectifier nonlinearities improve neural network acoustic models
-
Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: ICML (2013)
-
(2013)
ICML
-
-
Maas, A.L.1
Hannun, A.Y.2
Ng, A.Y.3
-
52
-
-
84960920723
-
-
CoRR abs/1505.00853
-
Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network. CoRR abs/1505.00853 (2015)
-
(2015)
Empirical Evaluation of Rectified Activations in Convolutional Network
-
-
Xu, B.1
Wang, N.2
Chen, T.3
Li, M.4
-
53
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)
-
(2015)
CVPR
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
55
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
56
-
-
85083951076
-
Adam: A method for stochastic optimization
-
Kingma, D., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014)
-
(2014)
Corr Abs/1412
, pp. 6980
-
-
Kingma, D.1
Ba, J.2
-
57
-
-
84898793384
-
Support surface prediction in indoor scenes
-
Guo, R., Hoiem, D.: Support surface prediction in indoor scenes. In: ICCV (2013)
-
(2013)
ICCV
-
-
Guo, R.1
Hoiem, D.2
-
58
-
-
84937964578
-
Learning deep features for scene recognition using places database
-
Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: NIPS (2014)
-
(2014)
NIPS
-
-
Zhou, B.1
Lapedriza, A.2
Xiao, J.3
Torralba, A.4
Oliva, A.5
-
59
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. IJCV 115(3), 211-252 (2015)
-
(2015)
IJCV
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
60
-
-
85029359197
-
Fast r-cnn
-
Girshick, R.: Fast r-cnn. In: ICCV (2015)
-
(2015)
ICCV
-
-
Girshick, R.1
-
61
-
-
84957966034
-
Sun RGB-D: A RGB-D scene understanding benchmark suite
-
Song, S., Lichtenberg, S., Xiao, J.: Sun RGB-D: a RGB-D scene understanding benchmark suite. In: CVPR (2015)
-
(2015)
CVPR
-
-
Song, S.1
Lichtenberg, S.2
Xiao, J.3
-
62
-
-
84856668740
-
A category-level 3-D object dataset: Putting the kinect to work
-
Janoch, A., Karayev, S., Jia, Y., Barron, J., Fritz, M., Saenko, K., Darrell, T.: A category-level 3-D object dataset: Putting the kinect to work. In: Workshop on Consumer Depth Cameras in Computer Vision (with ICCV) (2011)
-
(2011)
Workshop on Consumer Depth Cameras in Computer Vision (With ICCV)
-
-
Janoch, A.1
Karayev, S.2
Jia, Y.3
Barron, J.4
Fritz, M.5
Saenko, K.6
Darrell, T.7
-
63
-
-
84898798081
-
SUN3D: A database of big spaces reconstructed using SfM and object labels
-
Xiao, J., Owens, A., Torralba, A.: SUN3D: a database of big spaces reconstructed using SfM and object labels. In: ICCV (2013)
-
(2013)
ICCV
-
-
Xiao, J.1
Owens, A.2
Torralba, A.3
-
64
-
-
0035328421
-
Modeling the shape of the scene: A holistic representation of the spatial envelope
-
Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. IJCV 42, 145-175 (2011)
-
(2011)
IJCV
, vol.42
, pp. 145-175
-
-
Oliva, A.1
Torralba, A.2
-
65
-
-
84906344142
-
Learning rich features from RGBD images for object detection and segmentation
-
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
-
Gupta, S., Girshick, R., Arbeláez, P., Malik, J.: Learning rich features from RGBD images for object detection and segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 345-360. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10584-0_23
-
(2014)
ECCV 2014. LNCS
, vol.8695
, pp. 345-360
-
-
Gupta, S.1
Girshick, R.2
Arbeláez, P.3
Malik, J.4
-
66
-
-
84986258326
-
Cross modal distillation for supervision transfer
-
Gupta, S., Hoffman, J., Malik, J.: Cross modal distillation for supervision transfer. In: CVPR (2016)
-
(2016)
CVPR
-
-
Gupta, S.1
Hoffman, J.2
Malik, J.3
|