-
1
-
-
84866657764
-
SLIC superpixels compared to state-of-the-art superpixel methods
-
4
-
R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk. SLIC superpixels compared to state-of-the-art superpixel methods. PAMI, 2012.
-
(2012)
PAMI
-
-
Achanta, R.1
Shaji, A.2
Smith, K.3
Lucchi, A.4
Fua, P.5
Susstrunk, S.6
-
2
-
-
79953048649
-
Contour detection and hierarchical image segmentation
-
1, 2, 5
-
P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. PAMI, 2011.
-
(2011)
PAMI
-
-
Arbelaez, P.1
Maire, M.2
Fowlkes, C.3
Malik, J.4
-
3
-
-
84911417279
-
Multiscale combinatorial grouping
-
1, 4
-
P. Arbeláez, J. Pont-Tuset, J. T. Barron, F. Marques, and J. Malik. Multiscale combinatorial grouping. In CVPR, 2014.
-
(2014)
CVPR
-
-
Arbeláez, P.1
Pont-Tuset, J.2
Barron, J.T.3
Marques, F.4
Malik, J.5
-
4
-
-
79952183860
-
A database and evaluation methodology for optical flow
-
3, 6
-
S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and R. Szeliski. A database and evaluation methodology for optical flow. IJCV, 2011.
-
(2011)
IJCV
-
-
Baker, S.1
Scharstein, D.2
Lewis, J.3
Roth, S.4
Black, M.J.5
Szeliski, R.6
-
5
-
-
84973888826
-
High-for-low and low-for-high: Efficient boundary detection from deep object feat. And its app. To high-level vision
-
1, 2
-
G. Bertasius, J. Shi, and L. Torresani. High-for-low and low-for-high: Efficient boundary detection from deep object feat. And its app. To high-level vision. In ICCV, 2015.
-
(2015)
ICCV
-
-
Bertasius, G.1
Shi, J.2
Torresani, L.3
-
6
-
-
79551562584
-
Large displacement optical flow: Descriptor matching in variational motion estimation
-
3
-
T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI, 2011.
-
(2011)
PAMI
-
-
Brox, T.1
Malik, J.2
-
7
-
-
84887338408
-
A naturalistic open source movie for optical flow evaluation
-
6
-
D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for optical flow evaluation. In ECCV, 2012.
-
(2012)
ECCV
-
-
Butler, D.J.1
Wulff, J.2
Stanley, G.B.3
Black, M.J.4
-
8
-
-
0022808786
-
A computational approach to edge detection
-
1, 2
-
J. Canny. A computational approach to edge detection. PAMI, 1986.
-
(1986)
PAMI
-
-
Canny, J.1
-
9
-
-
84973916088
-
Unsupervised visual representation learning by context prediction
-
2, 6
-
C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context prediction. In ICCV, 2015.
-
(2015)
ICCV
-
-
Doersch, C.1
Gupta, A.2
Efros, A.A.3
-
10
-
-
33845580709
-
Supervised learning of edges and object boundaries
-
1, 2
-
P. Dollár, Z. Tu, and S. Belongie. Supervised learning of edges and object boundaries. In CVPR, 2006.
-
(2006)
CVPR
-
-
Dollár, P.1
Tu, Z.2
Belongie, S.3
-
11
-
-
84947781852
-
Fast edge detection using structured forests
-
1, 2, 4, 8
-
P. Dollár and C. L. Zitnick. Fast edge detection using structured forests. PAMI, 2015.
-
(2015)
PAMI
-
-
Dollár, P.1
Zitnick, C.L.2
-
12
-
-
84952007662
-
The pascal visual object classes challenge: A retrospective
-
2, 6
-
M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal visual object classes challenge: A retrospective. IJCV, 2014.
-
(2014)
IJCV
-
-
Everingham, M.1
Eslami, S.A.2
Van Gool, L.3
Williams, C.K.4
Winn, J.5
Zisserman, A.6
-
13
-
-
36448974509
-
Groups of adjacent contour segments for object detection
-
1
-
V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid. Groups of adjacent contour segments for object detection. PAMI, 2008.
-
(2008)
PAMI
-
-
Ferrari, V.1
Fevrier, L.2
Jurie, F.3
Schmid, C.4
-
14
-
-
84898803533
-
On the quantitative evaluation of edge detection schemes and their comparison with human performance
-
1, 2
-
J. R. Fram and E. S. Deutsch. On the quantitative evaluation of edge detection schemes and their comparison with human performance. IEEE TOC, 1975.
-
(1975)
IEEE TOC
-
-
Fram, J.R.1
Deutsch, E.S.2
-
15
-
-
0026221555
-
The design and use of steerable filters
-
1, 2
-
W. T. Freeman and E. H. Adelson. The design and use of steerable filters. PAMI, 1991.
-
(1991)
PAMI
-
-
Freeman, W.T.1
Adelson, E.H.2
-
16
-
-
84898817849
-
A unified video segmentation benchmark: Annotation, metrics and analysis
-
4, 5
-
F. Galasso, N. S. Nagaraja, T. Jimenez Cardenas, T. Brox, and B. Schiele. A unified video segmentation benchmark: Annotation, metrics and analysis. In ICCV, 2013.
-
(2013)
ICCV
-
-
Galasso, F.1
Nagaraja, N.S.2
Jimenez Cardenas, T.3
Brox, T.4
Schiele, B.5
-
17
-
-
85029359197
-
Fast R-CNN
-
6, 7
-
R. Girshick. Fast R-CNN. In ICCV, 2015.
-
(2015)
ICCV
-
-
Girshick, R.1
-
19
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
5
-
S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015.
-
(2015)
ICML
-
-
Ioffe, S.1
Szegedy, C.2
-
20
-
-
84959243006
-
Visual boundary prediction: A deep neural prediction network and quality dissection
-
2
-
J. J. Kivinen, C. K. Williams, and N. Heess. Visual boundary prediction: A deep neural prediction network and quality dissection. In AISTATS, 2014.
-
(2014)
AISTATS
-
-
Kivinen, J.J.1
Williams, C.K.2
Heess, N.3
-
22
-
-
85009928594
-
Deeplysupervised nets
-
5
-
C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeplysupervised nets. In AISTATS, 2015.
-
(2015)
AISTATS
-
-
Lee, C.-Y.1
Xie, S.2
Gallagher, P.3
Zhang, Z.4
Tu, Z.5
-
23
-
-
84887354170
-
Sketch tokens: A learned mid-level representation for contour and object detection
-
1, 2
-
J. Lim, C. L. Zitnick, and P. Dollár. Sketch tokens: A learned mid-level representation for contour and object detection. In CVPR, 2013.
-
(2013)
CVPR
-
-
Lim, J.1
Zitnick, C.L.2
Dollár, P.3
-
24
-
-
0019647180
-
An iterative image registration technique with an application to stereo vision
-
2
-
B. D. Lucas, T. Kanade, et al. An iterative image registration technique with an application to stereo vision. In IJCAI, 1981.
-
(1981)
IJCAI
-
-
Lucas, B.D.1
Kanade, T.2
-
25
-
-
3042525106
-
Learning to detect natural image boundaries using local brightness, color, and texture cues
-
1, 5
-
D. Martin, C. Fowlkes, and J. Malik. Learning to detect natural image boundaries using local brightness, color, and texture cues. PAMI, 2004.
-
(2004)
PAMI
-
-
Martin, D.1
Fowlkes, C.2
Malik, J.3
-
26
-
-
71149084945
-
Deep learning from temporal coherence in video
-
3
-
H. Mobahi, R. Collobert, and J. Weston. Deep learning from temporal coherence in video. In ICML, 2009.
-
(2009)
ICML
-
-
Mobahi, H.1
Collobert, R.2
Weston, J.3
-
27
-
-
74549174620
-
Visual parsing after recovery from blindness
-
3
-
Y. Ostrovsky, E. Meyers, S. Ganesh, U. Mathur, and P. Sinha. Visual parsing after recovery from blindness. Psychological Science, 2009.
-
(2009)
Psychological Science
-
-
Ostrovsky, Y.1
Meyers, E.2
Ganesh, S.3
Mathur, U.4
Sinha, P.5
-
28
-
-
84866674032
-
Learning object class detectors from weakly annotated video
-
4
-
A. Prest, C. Leistner, J. Civera, C. Schmid, and V. Ferrari. Learning object class detectors from weakly annotated video. In CVPR, 2012.
-
(2012)
CVPR
-
-
Prest, A.1
Leistner, C.2
Civera, J.3
Schmid, C.4
Ferrari, V.5
-
29
-
-
84986308636
-
Video (language) modeling: A baseline for generative models of natural videos
-
3
-
M. Ranzato, A. Szlam, J. Bruna, M. Mathieu, R. Collobert, and S. Chopra. Video (language) modeling: A baseline for generative models of natural videos. In ICLR, 2015.
-
(2015)
ICLR
-
-
Ranzato, M.1
Szlam, A.2
Bruna, J.3
Mathieu, M.4
Collobert, R.5
Chopra, S.6
-
30
-
-
84877752264
-
Discriminatively trained sparse code gradients for contour detection
-
1, 2
-
X. Ren and B. Liefeng. Discriminatively trained sparse code gradients for contour detection. In NIPS, 2012.
-
(2012)
NIPS
-
-
Ren, X.1
Liefeng, B.2
-
31
-
-
84959237250
-
EpicFlow: Edge-preserving interpolation of correspondences for optical flow
-
1, 2, 3, 4, 6
-
J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow. In CVPR, 2015.
-
(2015)
CVPR
-
-
Revaud, J.1
Weinzaepfel, P.2
Harchaoui, Z.3
Schmid, C.4
-
33
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
5
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. IJCV, 2015.
-
(2015)
IJCV
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
35
-
-
84911451086
-
Multiscale centerline detection by learning a scale-space distance transform
-
2
-
A. Sironi, V. Lepetit, and P. Fua. Multiscale centerline detection by learning a scale-space distance transform. In CVPR, 2014.
-
(2014)
CVPR
-
-
Sironi, A.1
Lepetit, V.2
Fua, P.3
-
36
-
-
84969544782
-
Unsupervised learning of video representations using LSTMs
-
3
-
N. Srivastava, E. Mansimov, and R. Salakhutdinov. Unsupervised learning of video representations using LSTMs. In ICML, 2015.
-
(2015)
ICML
-
-
Srivastava, N.1
Mansimov, E.2
Salakhutdinov, R.3
-
37
-
-
84962336509
-
-
arXiv: 1412. 1441, 5
-
C. Szegedy, S. Reed, D. Erhan, and D. Anguelov. Scalable, high-quality object detection. ArXiv: 1412. 1441, 2014.
-
(2014)
Scalable, High-quality Object Detection
-
-
Szegedy, C.1
Reed, S.2
Erhan, D.3
Anguelov, D.4
-
40
-
-
0026240594
-
Recognition by linear combinations of models
-
1
-
S. Ullman and R. Basri. Recognition by linear combinations of models. PAMI, 1991.
-
(1991)
PAMI
-
-
Ullman, S.1
Basri, R.2
-
41
-
-
84973889989
-
Unsupervised learning of visual representations using videos
-
2, 3, 6
-
X. Wang and A. Gupta. Unsupervised learning of visual representations using videos. In ICCV, 2015.
-
(2015)
ICCV
-
-
Wang, X.1
Gupta, A.2
-
43
-
-
84959185561
-
Learning to detect motion boundaries
-
2, 3, 5
-
P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. Learning to Detect Motion Boundaries. In CVPR, 2015.
-
(2015)
CVPR
-
-
Weinzaepfel, P.1
Revaud, J.2
Harchaoui, Z.3
Schmid, C.4
-
44
-
-
84973859794
-
Holistically-nested edge detection
-
1, 2, 4, 5, 7
-
S. Xie and Z. Tu. Holistically-nested edge detection. In ICCV, 2015.
-
(2015)
ICCV
-
-
Xie, S.1
Tu, Z.2
-
45
-
-
85009899017
-
Visualizing and understanding convolutional networks
-
7
-
M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014.
-
(2014)
ECCV
-
-
Zeiler, M.D.1
Fergus, R.2
-
46
-
-
85009853104
-
Edge boxes: Locating object proposals from edges
-
1, 4
-
C. L. Zitnick and P. Dollár. Edge boxes: Locating object proposals from edges. In ECCV, 2014.
-
(2014)
ECCV
-
-
Zitnick, C.L.1
Dollár, P.2
-
47
-
-
84867129630
-
The role of image understanding in contour detection
-
1
-
C. L. Zitnick and D. Parikh. The role of image understanding in contour detection. In CVPR, 2012.
-
(2012)
CVPR
-
-
Zitnick, C.L.1
Parikh, D.2
|