-
1
-
-
79952183860
-
A database and evaluation methodology for optical flow
-
1
-
S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and R. Szeliski. A database and evaluation methodology for optical flow. IJCV, 92 (1): 1-31, 2011. 1
-
(2011)
IJCV
, vol.92
, Issue.1
, pp. 1-31
-
-
Baker, S.1
Scharstein, D.2
Lewis, J.3
Roth, S.4
Black, M.J.5
Szeliski, R.6
-
2
-
-
84959236502
-
Long-term recurrent convolutional networks for visual recognition and description
-
7
-
J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, and T. Darrell. Long-term recurrent convolutional networks for visual recognition and description. In CVPR. 2015. 7
-
(2015)
CVPR
-
-
Donahue, J.1
Hendricks, L.A.2
Guadarrama, S.3
Rohrbach, M.4
Venugopalan, S.5
Saenko, K.6
Darrell, T.7
-
3
-
-
84911394491
-
Predicting object dynamics in scenes
-
2
-
D. Fouhey and C. L. Zitnick. Predicting object dynamics in scenes. In CVPR, 2014. 2
-
(2014)
CVPR
-
-
Fouhey, D.1
Zitnick, C.L.2
-
4
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
2
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014. 2
-
(2014)
CVPR
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
5
-
-
84897108420
-
Max-margin early event detectors
-
2
-
M. Hoai and F. De la Torre. Max-margin early event detectors. IJCV, 107 (2): 191-202, 2014. 2
-
(2014)
IJCV
, vol.107
, Issue.2
, pp. 191-202
-
-
Hoai, M.1
De La Torre, F.2
-
7
-
-
84956662558
-
Action-reaction: Forecasting the dynamics of human interaction
-
2
-
D.-A. Huang and K. M. Kitani. Action-reaction: Forecasting the dynamics of human interaction. In ECCV. 2014. 2
-
(2014)
ECCV
-
-
Huang, D.-A.1
Kitani, K.M.2
-
8
-
-
84913555165
-
-
arXiv preprint arXiv 5093. 4 1408
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv: 1408. 5093, 2014. 4
-
(2014)
Caffe: Convolutional Architecture for Fast Feature Embedding
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
9
-
-
84911364368
-
Large-scale video classification with convolutional neural networks
-
2, 4
-
A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video classification with convolutional neural networks. In CVPR, 2014. 2, 4
-
(2014)
CVPR
-
-
Karpathy, A.1
Toderici, G.2
Shetty, S.3
Leung, T.4
Sukthankar, R.5
Fei-Fei, L.6
-
10
-
-
84887363548
-
Activity forecasting
-
1, 2
-
K. Kitani, B. Ziebart, D. Bagnell, and M. Hebert. Activity forecasting. In ECCV, 2012. 1, 2
-
(2012)
ECCV
-
-
Kitani, K.1
Ziebart, B.2
Bagnell, D.3
Hebert, M.4
-
11
-
-
84893770737
-
Anticipating human activities using object affordances for reactive robotic response
-
2
-
H. S. Koppula and A. Saxena. Anticipating human activities using object affordances for reactive robotic response. In RSS, 2013. 2
-
(2013)
RSS
-
-
Koppula, H.S.1
Saxena, A.2
-
12
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
2, 3
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1097-1105, 2012. 2, 3
-
(2012)
NIPS
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
13
-
-
84856682691
-
HMDB: A large video database for human motion recognition
-
2
-
H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB: A large video database for human motion recognition. In ICCV, 2011. 2
-
(2011)
ICCV
-
-
Kuehne, H.1
Jhuang, H.2
Garrote, E.3
Poggio, T.4
Serre, T.5
-
15
-
-
84947609310
-
A hierarchical representation for future action prediction
-
2
-
T. Lan, T.-C. Chen, and S. Savarese. A hierarchical representation for future action prediction. In ECCV. 2014. 2
-
(2014)
ECCV
-
-
Lan, T.1
Chen, T.-C.2
Savarese, S.3
-
16
-
-
10044233701
-
Recognizing human actions: A local SVM approach
-
2, 4
-
I. Laptev, B. Caputo, et al. Recognizing human actions: A local SVM approach. In ICPR, 2004. 2, 4
-
(2004)
ICPR
-
-
Laptev, I.1
Caputo, B.2
-
17
-
-
79953049203
-
Sift Flow: Dense correspondence across scenes and its applications
-
2
-
C. Liu, J. Yuen, and A. Torralba. Sift Flow: Dense correspondence across scenes and its applications. PAMI, 2011. 2
-
(2011)
PAMI
-
-
Liu, C.1
Yuen, J.2
Torralba, A.3
-
18
-
-
84973884098
-
Déjà vu: Motion prediction in static images
-
2, 3, 4, 5, 6, 7
-
S. L. Pintea, J. C. van Gemert, and A. W. Smeulders. Déjà vu: Motion prediction in static images. In ECCV. 2014. 2, 3, 4, 5, 6, 7
-
(2014)
ECCV
-
-
Pintea, S.L.1
Van Gemert, J.C.2
Smeulders, A.W.3
-
19
-
-
84965108042
-
-
arXiv preprint arXiv 1412 6604. 2
-
M. Ranzato, A. Szlam, J. Bruna, M. Mathieu, R. Collobert, and S. Chopra. Video (language) modeling: A baseline for generative models of natural videos. arXiv preprint arXiv: 1412. 6604, 2014. 2
-
(2014)
Video (Language) Modeling: A Baseline for Generative Models of Natural Videos
-
-
Ranzato, M.1
Szlam, A.2
Bruna, J.3
Mathieu, M.4
Collobert, R.5
Chopra, S.6
-
20
-
-
84937862424
-
Two-stream convolutional networks for action recognition in videos
-
2, 4
-
K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. In NIPS, 2014. 2, 4
-
(2014)
NIPS
-
-
Simonyan, K.1
Zisserman, A.2
-
22
-
-
84969544782
-
Unsupervised learning of video representations using LSTMs
-
2
-
N. Srivastava, E. Mansimov, and R. Salakhutdinov. Unsupervised learning of video representations using LSTMs. In ICML, 2015. 2
-
(2015)
ICML
-
-
Srivastava, N.1
Mansimov, E.2
Salakhutdinov, R.3
-
23
-
-
84937522268
-
Going deeper with convolutions
-
2
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In CVPR. 2015. 2
-
(2015)
CVPR
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
24
-
-
84911380009
-
Patch to the future: Unsupervised visual prediction
-
1, 2
-
J. Walker, A. Gupta, and M. Hebert. Patch to the future: Unsupervised visual prediction. In CVPR, 2014. 1, 2
-
(2014)
CVPR
-
-
Walker, J.1
Gupta, A.2
Hebert, M.3
-
25
-
-
84898805910
-
Action recognition with improved trajectories
-
4, Sydney, Australia
-
H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV, Sydney, Australia, 2013. 4
-
(2013)
ICCV
-
-
Wang, H.1
Schmid, C.2
-
26
-
-
84959234840
-
Designing deep networks for surface normal estimation
-
3, 4
-
X. Wang, D. F. Fouhey, and A. Gupta. Designing deep networks for surface normal estimation. In CVPR. 2015. 3, 4
-
(2015)
CVPR
-
-
Wang, X.1
Fouhey, D.F.2
Gupta, A.3
-
28
-
-
84886833674
-
A data-driven approach for event prediction
-
2
-
J. Yuen and A. Torralba. A data-driven approach for event prediction. In ECCV, 2010. 2
-
(2010)
ECCV
-
-
Yuen, J.1
Torralba, A.2
-
29
-
-
84911443783
-
Panda: Pose aligned networks for deep attribute modeling
-
2
-
N. Zhang, M. Paluri, M. Ranzato, T. Darrell, and L. Bourdev. Panda: Pose aligned networks for deep attribute modeling. In CVPR, 2014. 2
-
(2014)
CVPR
-
-
Zhang, N.1
Paluri, M.2
Ranzato, M.3
Darrell, T.4
Bourdev, L.5
|