메뉴 건너뛰기




Volumn 113, Issue 11, 2016, Pages 2358-2366

Enhanced cell-surface display and secretory production of cellulolytic enzymes with Saccharomyces cerevisiae Sed1 signal peptide

Author keywords

cell surface display; endo glucanase; Pichia pastoris; Saccharomyces cerevisiae; secretion signal sequence; glucosidase

Indexed keywords

BAST FIBERS; BIOETHANOL; CELL MEMBRANES; CELLS; CYTOLOGY; ENZYME ACTIVITY; ENZYMES; GENES; PEPTIDES; PHYSIOLOGY; PROTEINS;

EID: 84988970798     PISSN: 00063592     EISSN: 10970290     Source Type: Journal    
DOI: 10.1002/bit.26008     Document Type: Article
Times cited : (54)

References (43)
  • 1
    • 84903814380 scopus 로고    scopus 로고
    • Protein expression in Pichia pastoris: Recent achievements and perspectives for heterologous protein production
    • Ahmad M, Hirz M, Pichler H, Schwab H. 2014. Protein expression in Pichia pastoris: Recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 98(12):5301–5317.
    • (2014) Appl Microbiol Biotechnol , vol.98 , Issue.12 , pp. 5301-5317
    • Ahmad, M.1    Hirz, M.2    Pichler, H.3    Schwab, H.4
  • 2
    • 0026599048 scopus 로고
    • One-step transformation of yeast in stationary phase
    • Chen DC, Yang BC, Kuo TT. 1992. One-step transformation of yeast in stationary phase. Curr Genet 21(1):83–84.
    • (1992) Curr Genet , vol.21 , Issue.1 , pp. 83-84
    • Chen, D.C.1    Yang, B.C.2    Kuo, T.T.3
  • 3
    • 65649100527 scopus 로고    scopus 로고
    • A surface display yeast two-hybrid screening system for high-throughput protein interactome mapping
    • Chen J, Zhou J, Sanders CK, Nolan JP, Cai H. 2009. A surface display yeast two-hybrid screening system for high-throughput protein interactome mapping. Anal Biochem 390(1):29–37.
    • (2009) Anal Biochem , vol.390 , Issue.1 , pp. 29-37
    • Chen, J.1    Zhou, J.2    Sanders, C.K.3    Nolan, J.P.4    Cai, H.5
  • 4
    • 70350502815 scopus 로고    scopus 로고
    • Fungal bioconversion of lignocellulosic residues; opportunities & perspectives
    • Dashtban M, Schraft H, Qin W. 2009. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int J Biol Sci 5(6):578–595.
    • (2009) Int J Biol Sci , vol.5 , Issue.6 , pp. 578-595
    • Dashtban, M.1    Schraft, H.2    Qin, W.3
  • 5
    • 84865156886 scopus 로고    scopus 로고
    • Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production
    • Fan LH, Zhang ZJ, Yu XY, Xue YX, Tan TW. 2012. Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production. Proc Natl Acad Sci USA 109(33):13260–13265.
    • (2012) Proc Natl Acad Sci USA , vol.109 , Issue.33 , pp. 13260-13265
    • Fan, L.H.1    Zhang, Z.J.2    Yu, X.Y.3    Xue, Y.X.4    Tan, T.W.5
  • 6
    • 2342638898 scopus 로고    scopus 로고
    • Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme
    • Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A. 2004. Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70(2):1207–1212.
    • (2004) Appl Environ Microbiol , vol.70 , Issue.2 , pp. 1207-1212
    • Fujita, Y.1    Ito, J.2    Ueda, M.3    Fukuda, H.4    Kondo, A.5
  • 9
    • 80055040909 scopus 로고    scopus 로고
    • Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome
    • Goyal G, Tsai SL, Madan B, DaSilva NA, Chen W. 2011. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome. Microb Cell Fact 10:89.
    • (2011) Microb Cell Fact , vol.10 , pp. 89
    • Goyal, G.1    Tsai, S.L.2    Madan, B.3    DaSilva, N.A.4    Chen, W.5
  • 10
    • 78650804716 scopus 로고    scopus 로고
    • Expression of aspartic protease from Neurospora crassa in industrial ethanol-producing yeast and its application in ethanol production
    • Guo ZP, Qiu CY, Zhang L, Ding ZY, Wang ZX, Shi GY. 2011. Expression of aspartic protease from Neurospora crassa in industrial ethanol-producing yeast and its application in ethanol production. Enzyme Microb Technol 48(2):148–154.
    • (2011) Enzyme Microb Technol , vol.48 , Issue.2 , pp. 148-154
    • Guo, Z.P.1    Qiu, C.Y.2    Zhang, L.3    Ding, Z.Y.4    Wang, Z.X.5    Shi, G.Y.6
  • 12
    • 77249147339 scopus 로고    scopus 로고
    • Engineering of protein secretion in yeast: Strategies and impact on protein production
    • Idiris A, Tohda H, Kumagai H, Takegawa K. 2010. Engineering of protein secretion in yeast: Strategies and impact on protein production. Appl Microbiol Biotechnol 86(2):403–417.
    • (2010) Appl Microbiol Biotechnol , vol.86 , Issue.2 , pp. 403-417
    • Idiris, A.1    Tohda, H.2    Kumagai, H.3    Takegawa, K.4
  • 13
    • 84892376781 scopus 로고    scopus 로고
    • Efficient yeast cell-surface display of exo- and endo-cellulase using the SED1 anchoring region and its original promoter
    • Inokuma K, Hasunuma T, Kondo A. 2014. Efficient yeast cell-surface display of exo- and endo-cellulase using the SED1 anchoring region and its original promoter. Biotechnol Biofuels 7(1):8.
    • (2014) Biotechnol Biofuels , vol.7 , Issue.1 , pp. 8
    • Inokuma, K.1    Hasunuma, T.2    Kondo, A.3
  • 14
    • 84925519444 scopus 로고    scopus 로고
    • Efficient co-displaying and artificial ratio control of α-amylase and glucoamylase on the yeast cell surface by using combinations of different anchoring domains
    • Inokuma K, Yoshida T, Ishii J, Hasunuma T, Kondo A. 2015. Efficient co-displaying and artificial ratio control of α-amylase and glucoamylase on the yeast cell surface by using combinations of different anchoring domains. Appl Microbiol Biotechnol 99(4):1655–1663.
    • (2015) Appl Microbiol Biotechnol , vol.99 , Issue.4 , pp. 1655-1663
    • Inokuma, K.1    Yoshida, T.2    Ishii, J.3    Hasunuma, T.4    Kondo, A.5
  • 15
    • 67651165085 scopus 로고    scopus 로고
    • A simple and immediate method for simultaneously evaluating expression level and plasmid maintenance in yeast
    • Ishii J, Izawa K, Matsumura S, Wakamura K, Tanino T, Tanaka T, Ogino C, Fukuda H, Kondo A. 2009. A simple and immediate method for simultaneously evaluating expression level and plasmid maintenance in yeast. J Biochem 145(6):701–708.
    • (2009) J Biochem , vol.145 , Issue.6 , pp. 701-708
    • Ishii, J.1    Izawa, K.2    Matsumura, S.3    Wakamura, K.4    Tanino, T.5    Tanaka, T.6    Ogino, C.7    Fukuda, H.8    Kondo, A.9
  • 16
    • 84870369602 scopus 로고    scopus 로고
    • Gene expression cross-profiling in genetically modified industrial Saccharomyces cerevisiae strains during high-temperature ethanol production from xylose
    • Ismail KS, Sakamoto T, Hatanaka H, Hasunuma T, Kondo A. 2013. Gene expression cross-profiling in genetically modified industrial Saccharomyces cerevisiae strains during high-temperature ethanol production from xylose. J Biotechnol 163(1):50–60.
    • (2013) J Biotechnol , vol.163 , Issue.1 , pp. 50-60
    • Ismail, K.S.1    Sakamoto, T.2    Hatanaka, H.3    Hasunuma, T.4    Kondo, A.5
  • 17
    • 77950412511 scopus 로고    scopus 로고
    • Quantitative Y2H screening: Cloning and signal peptide engineering of a fungal secretory LacA gene and its application to yeast two-hybrid system as a quantitative reporter
    • Kamiya T, Ojima T, Sugimoto K, Nakano H, Kawarasaki Y. 2010. Quantitative Y2H screening: Cloning and signal peptide engineering of a fungal secretory LacA gene and its application to yeast two-hybrid system as a quantitative reporter. J Biotechnol 146(4):151–159.
    • (2010) J Biotechnol , vol.146 , Issue.4 , pp. 151-159
    • Kamiya, T.1    Ojima, T.2    Sugimoto, K.3    Nakano, H.4    Kawarasaki, Y.5
  • 18
    • 59149104036 scopus 로고    scopus 로고
    • Signal anchor sequence provides motive force for polypeptide chain translocation through the endoplasmic reticulum membrane
    • Kida Y, Morimoto F, Sakaguchi M. 2009. Signal anchor sequence provides motive force for polypeptide chain translocation through the endoplasmic reticulum membrane. J Biol Chem 284(5):2861–2866.
    • (2009) J Biol Chem , vol.284 , Issue.5 , pp. 2861-2866
    • Kida, Y.1    Morimoto, F.2    Sakaguchi, M.3
  • 19
    • 84873260717 scopus 로고    scopus 로고
    • Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase
    • Kim S, Baek SH, Lee K, Hahn JS. 2013. Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase. Microb Cell Fact 12:14.
    • (2013) Microb Cell Fact , vol.12 , pp. 14
    • Kim, S.1    Baek, S.H.2    Lee, K.3    Hahn, J.S.4
  • 20
    • 25144500161 scopus 로고    scopus 로고
    • Comparison of different signal peptides for secretion of heterologous proteins in fission yeast
    • Kjærulff S, Jensen MR. 2005. Comparison of different signal peptides for secretion of heterologous proteins in fission yeast. Biochem Biophys Res Commun 336(3):974–982.
    • (2005) Biochem Biophys Res Commun , vol.336 , Issue.3 , pp. 974-982
    • Kjærulff, S.1    Jensen, M.R.2
  • 21
    • 1642340053 scopus 로고    scopus 로고
    • Yeast cell-surface display-applications of molecular display
    • Kondo A, Ueda M. 2004. Yeast cell-surface display-applications of molecular display. Appl Microbiol Biotechnol 64(1):28–40.
    • (2004) Appl Microbiol Biotechnol , vol.64 , Issue.1 , pp. 28-40
    • Kondo, A.1    Ueda, M.2
  • 22
    • 47149092107 scopus 로고    scopus 로고
    • Direct ethanol production from barley β-glucan by sake yeast displaying Aspergillus oryzae β-glucosidase and endoglucanase
    • Kotaka A, Bando H, Kaya M, Kato-Murai M, Kuroda K, Sahara H, Hata Y, Kondo A, Ueda M. 2008. Direct ethanol production from barley β-glucan by sake yeast displaying Aspergillus oryzae β-glucosidase and endoglucanase. J Biosci Bioeng 105(6):622–627.
    • (2008) J Biosci Bioeng , vol.105 , Issue.6 , pp. 622-627
    • Kotaka, A.1    Bando, H.2    Kaya, M.3    Kato-Murai, M.4    Kuroda, K.5    Sahara, H.6    Hata, Y.7    Kondo, A.8    Ueda, M.9
  • 23
    • 0020365369 scopus 로고
    • Structure of a yeast pheromone gene (MFα): A putative α-factor precursor contains four tandem copies of mature α-factor
    • Kurjan J, Herskowitz I. 1982. Structure of a yeast pheromone gene (MFα): A putative α-factor precursor contains four tandem copies of mature α-factor. Cell 30(3):933–943
    • (1982) Cell , vol.30 , Issue.3 , pp. 933-943
    • Kurjan, J.1    Herskowitz, I.2
  • 24
    • 0037201404 scopus 로고    scopus 로고
    • Intracellular trafficking and metabolic turnover of yeast prepro-α-factor-SRIF precursors in GH3 cells
    • Lee MA, Cheong KH, Shields D, Park SD, Hong SH. 2002. Intracellular trafficking and metabolic turnover of yeast prepro-α-factor-SRIF precursors in GH3 cells. Exp Mol Med 34(4):285–293.
    • (2002) Exp Mol Med , vol.34 , Issue.4 , pp. 285-293
    • Lee, M.A.1    Cheong, K.H.2    Shields, D.3    Park, S.D.4    Hong, S.H.5
  • 25
    • 84883609647 scopus 로고    scopus 로고
    • Surface display of recombinant Drosophila melanogaster acetylcholinesterase for detection of organic phosphorus and carbamate pesticides
    • Li J, Qian B, Yin J, Wu S, Zhuan F, Xu S, Li J, Salazar JK, Zhang W, Wang H. 2013. Surface display of recombinant Drosophila melanogaster acetylcholinesterase for detection of organic phosphorus and carbamate pesticides. PLoS ONE 8(9):e72986.
    • (2013) PLoS ONE , vol.8 , Issue.9
    • Li, J.1    Qian, B.2    Yin, J.3    Wu, S.4    Zhuan, F.5    Xu, S.6    Li, J.7    Salazar, J.K.8    Zhang, W.9    Wang, H.10
  • 26
    • 84942422812 scopus 로고    scopus 로고
    • Combined cell-surface display- and secretion-based strategies for production of cellulosic ethanol with Saccharomyces cerevisiae
    • Liu Z, Inokuma K, Ho SH, Haan R, Hasunuma T, Van Zyl WH, Kondo A. 2015. Combined cell-surface display- and secretion-based strategies for production of cellulosic ethanol with Saccharomyces cerevisiae. Biotechnol Biofuels 8:162.
    • (2015) Biotechnol Biofuels , vol.8 , pp. 162
    • Liu, Z.1    Inokuma, K.2    Ho, S.H.3    Haan, R.4    Hasunuma, T.5    Van Zyl, W.H.6    Kondo, A.7
  • 27
    • 0032189258 scopus 로고    scopus 로고
    • Signal sequences: More than just greasy peptides
    • Martoglio B, Dobberstein B. 1998. Signal sequences: More than just greasy peptides. Trends Cell Biol 8(10):410–415.
    • (1998) Trends Cell Biol , vol.8 , Issue.10 , pp. 410-415
    • Martoglio, B.1    Dobberstein, B.2
  • 29
    • 84863090270 scopus 로고    scopus 로고
    • Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology
    • Näätsaari L, Mistlberger B, Ruth C, Hajek T, Hartner FS, Glieder A. 2012. Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology. PLoS ONE 7(6):e39720.
    • (2012) PLoS ONE , vol.7 , Issue.6
    • Näätsaari, L.1    Mistlberger, B.2    Ruth, C.3    Hajek, T.4    Hartner, F.S.5    Glieder, A.6
  • 30
    • 0029952547 scopus 로고    scopus 로고
    • Signal sequences specify the targeting route to the endoplasmic reticulum membrane
    • Ng DT, Brown JD, Walter P. 1996. Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J Cell Biol 134(2):269–278.
    • (1996) J Cell Biol , vol.134 , Issue.2 , pp. 269-278
    • Ng, D.T.1    Brown, J.D.2    Walter, P.3
  • 31
    • 0033219409 scopus 로고    scopus 로고
    • Human lysozyme secretion increased by alpha-factor pro-sequence in Pichia pastoris
    • Oka C, Tanaka M, Muraki M, Harata K, Suzuki K, Jigami Y. 1999. Human lysozyme secretion increased by alpha-factor pro-sequence in Pichia pastoris. Biosci Biotechnol Biochem 63(11):1977–1983.
    • (1999) Biosci Biotechnol Biochem , vol.63 , Issue.11 , pp. 1977-1983
    • Oka, C.1    Tanaka, M.2    Muraki, M.3    Harata, K.4    Suzuki, K.5    Jigami, Y.6
  • 32
    • 84869046702 scopus 로고    scopus 로고
    • Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall
    • Orlean P. 2012. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 192(3):775–818.
    • (2012) Genetics , vol.192 , Issue.3 , pp. 775-818
    • Orlean, P.1
  • 33
    • 0032544614 scopus 로고    scopus 로고
    • Signal sequence recognition in posttranslational protein transport across the yeast ER membrane
    • Plath K, Mothes W, Wilkinson BM, Stirling CJ, Rapoport TA. 1998. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94(6):795–807.
    • (1998) Cell , vol.94 , Issue.6 , pp. 795-807
    • Plath, K.1    Mothes, W.2    Wilkinson, B.M.3    Stirling, C.J.4    Rapoport, T.A.5
  • 34
    • 68149137106 scopus 로고    scopus 로고
    • Directed evolution of a secretory leader for the improved expression of heterologous proteins and full-length antibodies in Saccharomyces cerevisiae
    • Rakestraw JA, Sazinsky SL, Piatesi A, Antipov E, Wittrup KD. 2009. Directed evolution of a secretory leader for the improved expression of heterologous proteins and full-length antibodies in Saccharomyces cerevisiae. Biotechnol Bioeng 103(6):1192–1201.
    • (2009) Biotechnol Bioeng , vol.103 , Issue.6 , pp. 1192-1201
    • Rakestraw, J.A.1    Sazinsky, S.L.2    Piatesi, A.3    Antipov, E.4    Wittrup, K.D.5
  • 35
    • 0031778695 scopus 로고    scopus 로고
    • Sed1p is a major cell wall protein of Saccharomyces cerevisiae in the stationary phase and is involved in lytic enzyme resistance
    • Shimoi H, Kitagaki H, Ohmori H, Iimura Y, Ito K. 1998. Sed1p is a major cell wall protein of Saccharomyces cerevisiae in the stationary phase and is involved in lytic enzyme resistance. J Bacteriol 180(13):3381–3387.
    • (1998) J Bacteriol , vol.180 , Issue.13 , pp. 3381-3387
    • Shimoi, H.1    Kitagaki, H.2    Ohmori, H.3    Iimura, Y.4    Ito, K.5
  • 36
    • 0033803961 scopus 로고    scopus 로고
    • Cell surface engineering of yeast: Construction of arming yeast with biocatalyst
    • Ueda M, Tanaka A. 2000. Cell surface engineering of yeast: Construction of arming yeast with biocatalyst. J Biosci Bioeng 90(2):125–136.
    • (2000) J Biosci Bioeng , vol.90 , Issue.2 , pp. 125-136
    • Ueda, M.1    Tanaka, A.2
  • 37
    • 27544459042 scopus 로고    scopus 로고
    • Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains
    • Van Rooyen R, Hahn-Hägerdal B, La Grange DC, Van Zyl WH. 2005. Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. J Biotechnol 120(3):284–295.
    • (2005) J Biotechnol , vol.120 , Issue.3 , pp. 284-295
    • Van Rooyen, R.1    Hahn-Hägerdal, B.2    La Grange, D.C.3    Van Zyl, W.H.4
  • 38
    • 76649105430 scopus 로고    scopus 로고
    • Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol
    • Wen F, Sun J, Zhao H. 2010. Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol 76(4):1251–1260.
    • (2010) Appl Environ Microbiol , vol.76 , Issue.4 , pp. 1251-1260
    • Wen, F.1    Sun, J.2    Zhao, H.3
  • 39
    • 77953675236 scopus 로고    scopus 로고
    • Cocktail δ-integration: A novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains
    • Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A. 2010. Cocktail δ-integration: A novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb Cell Fact 9:32.
    • (2010) Microb Cell Fact , vol.9 , pp. 32
    • Yamada, R.1    Taniguchi, N.2    Tanaka, T.3    Ogino, C.4    Fukuda, H.5    Kondo, A.6
  • 40
    • 85028099794 scopus 로고    scopus 로고
    • Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression
    • Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A. 2011. Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression. Biotechnol Biofuels 4:8.
    • (2011) Biotechnol Biofuels , vol.4 , pp. 8
    • Yamada, R.1    Taniguchi, N.2    Tanaka, T.3    Ogino, C.4    Fukuda, H.5    Kondo, A.6
  • 41
    • 84859754918 scopus 로고    scopus 로고
    • Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase
    • Yamakawa S, Yamada R, Tanaka T, Ogino C, Kondo A. 2012. Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase. Enzyme Microb Technol 50(6–7):343–347.
    • (2012) Enzyme Microb Technol , vol.50 , Issue.6-7 , pp. 343-347
    • Yamakawa, S.1    Yamada, R.2    Tanaka, T.3    Ogino, C.4    Kondo, A.5
  • 42
    • 77955852807 scopus 로고    scopus 로고
    • Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes
    • Yanase S, Hasunuma T, Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A. 2010. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Appl Microbiol Biotechnol 88(1):381–388.
    • (2010) Appl Microbiol Biotechnol , vol.88 , Issue.1 , pp. 381-388
    • Yanase, S.1    Hasunuma, T.2    Yamada, R.3    Tanaka, T.4    Ogino, C.5    Fukuda, H.6    Kondo, A.7
  • 43
    • 84928711716 scopus 로고    scopus 로고
    • Synthetic signal sequences that enable efficient secretory protein production in the yeast Kluyveromyces marxianus
    • Yarimizu T, Nakamura M, Hoshida H, Akada R. 2015. Synthetic signal sequences that enable efficient secretory protein production in the yeast Kluyveromyces marxianus. Microb Cell Fact 14:20.
    • (2015) Microb Cell Fact , vol.14 , pp. 20
    • Yarimizu, T.1    Nakamura, M.2    Hoshida, H.3    Akada, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.