-
1
-
-
4744372082
-
Evolution of the fgf and fgfr gene families
-
Itoh, N., Ornitz, D.M., Evolution of the fgf and fgfr gene families. Trends Genet 20 (2004), 563–569.
-
(2004)
Trends Genet
, vol.20
, pp. 563-569
-
-
Itoh, N.1
Ornitz, D.M.2
-
2
-
-
38149134409
-
Functional evolutionary history of the mouse fgf gene family
-
Itoh, N., Ornitz, D.M., Functional evolutionary history of the mouse fgf gene family. Dev Dyn 237 (2008), 18–27.
-
(2008)
Dev Dyn
, vol.237
, pp. 18-27
-
-
Itoh, N.1
Ornitz, D.M.2
-
3
-
-
0033951768
-
Fgfs, heparan sulfate and fgfrs: complex interactions essential for development
-
Ornitz, D.M., Fgfs, heparan sulfate and fgfrs: complex interactions essential for development. Bioessays 22 (2000), 108–112.
-
(2000)
Bioessays
, vol.22
, pp. 108-112
-
-
Ornitz, D.M.1
-
4
-
-
34247565954
-
Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members
-
Goetz, R., Beenken, A., Ibrahimi, O.A., Kalinina, J., Olsen, S.K., Eliseenkova, A.V., Xu, C., Neubert, T.A., Zhang, F., Linhardt, R.J., Yu, X., et al. Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol 27 (2007), 3417–3428.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 3417-3428
-
-
Goetz, R.1
Beenken, A.2
Ibrahimi, O.A.3
Kalinina, J.4
Olsen, S.K.5
Eliseenkova, A.V.6
Xu, C.7
Neubert, T.A.8
Zhang, F.9
Linhardt, R.J.10
Yu, X.11
-
5
-
-
77957376253
-
Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse
-
Fon Tacer, K., Bookout, A.L., Ding, X., Kurosu, H., John, G.B., Wang, L., Goetz, R., Mohammadi, M., Kuro-o, M., Mangelsdorf, D.J., Kliewer, S.A., Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol 24 (2010), 2050–2064.
-
(2010)
Mol Endocrinol
, vol.24
, pp. 2050-2064
-
-
Fon Tacer, K.1
Bookout, A.L.2
Ding, X.3
Kurosu, H.4
John, G.B.5
Wang, L.6
Goetz, R.7
Mohammadi, M.8
Kuro-o, M.9
Mangelsdorf, D.J.10
Kliewer, S.A.11
-
6
-
-
27844546989
-
Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis
-
Inagaki, T., Choi, M., Moschetta, A., Peng, L., Cummins, C.L., McDonald, J.G., Luo, G., Jones, S.A., Goodwin, B., Richardson, J.A., Gerard, R.D., et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2 (2005), 217–225.
-
(2005)
Cell Metab
, vol.2
, pp. 217-225
-
-
Inagaki, T.1
Choi, M.2
Moschetta, A.3
Peng, L.4
Cummins, C.L.5
McDonald, J.G.6
Luo, G.7
Jones, S.A.8
Goodwin, B.9
Richardson, J.A.10
Gerard, R.D.11
-
7
-
-
33751115468
-
Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man
-
Lundasen, T., Galman, C., Angelin, B., Rudling, M., Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man. J Intern Med 260 (2006), 530–536.
-
(2006)
J Intern Med
, vol.260
, pp. 530-536
-
-
Lundasen, T.1
Galman, C.2
Angelin, B.3
Rudling, M.4
-
8
-
-
48349127924
-
The circulating metabolic regulator fgf21 is induced by prolonged fasting and pparalpha activation in man
-
Galman, C., Lundasen, T., Kharitonenkov, A., Bina, H.A., Eriksson, M., Hafstrom, I., Dahlin, M., Amark, P., Angelin, B., Rudling, M., The circulating metabolic regulator fgf21 is induced by prolonged fasting and pparalpha activation in man. Cell Metab 8 (2008), 169–174.
-
(2008)
Cell Metab
, vol.8
, pp. 169-174
-
-
Galman, C.1
Lundasen, T.2
Kharitonenkov, A.3
Bina, H.A.4
Eriksson, M.5
Hafstrom, I.6
Dahlin, M.7
Amark, P.8
Angelin, B.9
Rudling, M.10
-
9
-
-
84922726981
-
A nontumorigenic variant of fgf19 treats cholestatic liver diseases
-
This paper describes a variant of FGF19 that is non-mitogenic yet maintains its potential therapeutic effects on hepatic bile acid metabolism.
-
Luo, J., Ko, B., Elliott, M., Zhou, M., Lindhout, D.A., Phung, V., To, C., Learned, R.M., Tian, H., DePaoli, A.M., Ling, L., A nontumorigenic variant of fgf19 treats cholestatic liver diseases. Sci Transl Med, 6, 2014, 247ra100 This paper describes a variant of FGF19 that is non-mitogenic yet maintains its potential therapeutic effects on hepatic bile acid metabolism.
-
(2014)
Sci Transl Med
, vol.6
, pp. 247ra100
-
-
Luo, J.1
Ko, B.2
Elliott, M.3
Zhou, M.4
Lindhout, D.A.5
Phung, V.6
To, C.7
Learned, R.M.8
Tian, H.9
DePaoli, A.M.10
Ling, L.11
-
10
-
-
70349496807
-
A new mechanism for bile acid diarrhea: defective feedback inhibition of bile acid biosynthesis
-
Walters, J.R., Tasleem, A.M., Omer, O.S., Brydon, W.G., Dew, T., le Roux, C.W., A new mechanism for bile acid diarrhea: defective feedback inhibition of bile acid biosynthesis. Clin Gastroenterol Hepatol 7 (2009), 1189–1194.
-
(2009)
Clin Gastroenterol Hepatol
, vol.7
, pp. 1189-1194
-
-
Walters, J.R.1
Tasleem, A.M.2
Omer, O.S.3
Brydon, W.G.4
Dew, T.5
le Roux, C.W.6
-
11
-
-
84930584701
-
Detection of fgf15 in plasma by stable isotope standards and capture by anti-peptide antibodies and targeted mass spectrometry
-
This paper describes the first specific measurement of FGF15 in mouse plasma. It confirms that plasma FGF15 is regulated by feeding/fasting cycles.
-
Katafuchi, T., Esterhazy, D., Lemoff, A., Ding, X., Sondhi, V., Kliewer, S.A., Mirzaei, H., Mangelsdorf, D.J., Detection of fgf15 in plasma by stable isotope standards and capture by anti-peptide antibodies and targeted mass spectrometry. Cell Metab 21 (2015), 898–904 This paper describes the first specific measurement of FGF15 in mouse plasma. It confirms that plasma FGF15 is regulated by feeding/fasting cycles.
-
(2015)
Cell Metab
, vol.21
, pp. 898-904
-
-
Katafuchi, T.1
Esterhazy, D.2
Lemoff, A.3
Ding, X.4
Sondhi, V.5
Kliewer, S.A.6
Mirzaei, H.7
Mangelsdorf, D.J.8
-
12
-
-
23644437321
-
Impaired negative feedback suppression of bile acid synthesis in mice lacking betaklotho
-
Ito, S., Fujimori, T., Furuya, A., Satoh, J., Nabeshima, Y., Nabeshima, Y., Impaired negative feedback suppression of bile acid synthesis in mice lacking betaklotho. J Clin Invest 115 (2005), 2202–2208.
-
(2005)
J Clin Invest
, vol.115
, pp. 2202-2208
-
-
Ito, S.1
Fujimori, T.2
Furuya, A.3
Satoh, J.4
Nabeshima, Y.5
Nabeshima, Y.6
-
13
-
-
84870334072
-
Nuclear receptors hnf4alpha and lrh-1 cooperate in regulating cyp7a1 in vivo
-
Kir, S., Zhang, Y., Gerard, R.D., Kliewer, S.A., Mangelsdorf, D.J., Nuclear receptors hnf4alpha and lrh-1 cooperate in regulating cyp7a1 in vivo. J Biol Chem 287 (2012), 41334–41341.
-
(2012)
J Biol Chem
, vol.287
, pp. 41334-41341
-
-
Kir, S.1
Zhang, Y.2
Gerard, R.D.3
Kliewer, S.A.4
Mangelsdorf, D.J.5
-
14
-
-
33846910174
-
Coordinated recruitment of histone methyltransferase g9a and other chromatin-modifying enzymes in shp-mediated regulation of hepatic bile acid metabolism
-
Fang, S., Miao, J., Xiang, L., Ponugoti, B., Treuter, E., Kemper, J.K., Coordinated recruitment of histone methyltransferase g9a and other chromatin-modifying enzymes in shp-mediated regulation of hepatic bile acid metabolism. Mol Cell Biol 27 (2007), 1407–1424.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 1407-1424
-
-
Fang, S.1
Miao, J.2
Xiang, L.3
Ponugoti, B.4
Treuter, E.5
Kemper, J.K.6
-
15
-
-
33750698614
-
Identification of a hormonal basis for gallbladder filling
-
Choi, M., Moschetta, A., Bookout, A.L., Peng, L., Umetani, M., Holmstrom, S.R., Suino-Powell, K., Xu, H.E., Richardson, J.A., Gerard, R.D., Mangelsdorf, D.J., et al. Identification of a hormonal basis for gallbladder filling. Nat Med 12 (2006), 1253–1255.
-
(2006)
Nat Med
, vol.12
, pp. 1253-1255
-
-
Choi, M.1
Moschetta, A.2
Bookout, A.L.3
Peng, L.4
Umetani, M.5
Holmstrom, S.R.6
Suino-Powell, K.7
Xu, H.E.8
Richardson, J.A.9
Gerard, R.D.10
Mangelsdorf, D.J.11
-
16
-
-
79953129095
-
Fgf19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis
-
Kir, S., Beddow, S.A., Samuel, V.T., Miller, P., Previs, S.F., Suino-Powell, K., Xu, H.E., Shulman, G.I., Kliewer, S.A., Mangelsdorf, D.J., Fgf19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 331 (2011), 1621–1624.
-
(2011)
Science
, vol.331
, pp. 1621-1624
-
-
Kir, S.1
Beddow, S.A.2
Samuel, V.T.3
Miller, P.4
Previs, S.F.5
Suino-Powell, K.6
Xu, H.E.7
Shulman, G.I.8
Kliewer, S.A.9
Mangelsdorf, D.J.10
-
17
-
-
79958066536
-
Fgf15/19 regulates hepatic glucose metabolism by inhibiting the creb-pgc-1alpha pathway
-
Potthoff, M.J., Boney-Montoya, J., Choi, M., He, T., Sunny, N.E., Satapati, S., Suino-Powell, K., Xu, H.E., Gerard, R.D., Finck, B.N., Burgess, S.C., et al. Fgf15/19 regulates hepatic glucose metabolism by inhibiting the creb-pgc-1alpha pathway. Cell Metab 13 (2011), 729–738.
-
(2011)
Cell Metab
, vol.13
, pp. 729-738
-
-
Potthoff, M.J.1
Boney-Montoya, J.2
Choi, M.3
He, T.4
Sunny, N.E.5
Satapati, S.6
Suino-Powell, K.7
Xu, H.E.8
Gerard, R.D.9
Finck, B.N.10
Burgess, S.C.11
-
18
-
-
0036086285
-
A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice
-
Nicholes, K., Guillet, S., Tomlinson, E., Hillan, K., Wright, B., Frantz, G.D., Pham, T.A., Dillard-Telm, L., Tsai, S.P., Stephan, J.P., Stinson, J., et al. A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice. Am J Pathol 160 (2002), 2295–2307.
-
(2002)
Am J Pathol
, vol.160
, pp. 2295-2307
-
-
Nicholes, K.1
Guillet, S.2
Tomlinson, E.3
Hillan, K.4
Wright, B.5
Frantz, G.D.6
Pham, T.A.7
Dillard-Telm, L.8
Tsai, S.P.9
Stephan, J.P.10
Stinson, J.11
-
19
-
-
79952803104
-
Fgf19 regulates cell proliferation, glucose and bile acid metabolism via fgfr4-dependent and independent pathways
-
Wu, A.L., Coulter, S., Liddle, C., Wong, A., Eastham-Anderson, J., French, D.M., Peterson, A.S., Sonoda, J., Fgf19 regulates cell proliferation, glucose and bile acid metabolism via fgfr4-dependent and independent pathways. PLoS One, 6, 2011, e17868.
-
(2011)
PLoS One
, vol.6
, pp. e17868
-
-
Wu, A.L.1
Coulter, S.2
Liddle, C.3
Wong, A.4
Eastham-Anderson, J.5
French, D.M.6
Peterson, A.S.7
Sonoda, J.8
-
20
-
-
2542505481
-
Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes
-
Fu, L., John, L.M., Adams, S.H., Yu, X.X., Tomlinson, E., Renz, M., Williams, P.M., Soriano, R., Corpuz, R., Moffat, B., Vandlen, R., et al. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology 145 (2004), 2594–2603.
-
(2004)
Endocrinology
, vol.145
, pp. 2594-2603
-
-
Fu, L.1
John, L.M.2
Adams, S.H.3
Yu, X.X.4
Tomlinson, E.5
Renz, M.6
Williams, P.M.7
Soriano, R.8
Corpuz, R.9
Moffat, B.10
Vandlen, R.11
-
21
-
-
18344394556
-
Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity
-
Tomlinson, E., Fu, L., John, L., Hultgren, B., Huang, X., Renz, M., Stephan, J.P., Tsai, S.P., Powell-Braxton, L., French, D., Stewart, T.A., Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology 143 (2002), 1741–1747.
-
(2002)
Endocrinology
, vol.143
, pp. 1741-1747
-
-
Tomlinson, E.1
Fu, L.2
John, L.3
Hultgren, B.4
Huang, X.5
Renz, M.6
Stephan, J.P.7
Tsai, S.P.8
Powell-Braxton, L.9
French, D.10
Stewart, T.A.11
-
22
-
-
84887447664
-
Fgf19 action in the brain induces insulin-independent glucose lowering
-
Morton, G.J., Matsen, M.E., Bracy, D.P., Meek, T.H., Nguyen, H.T., Stefanovski, D., Bergman, R.N., Wasserman, D.H., Schwartz, M.W., Fgf19 action in the brain induces insulin-independent glucose lowering. J Clin Invest 123 (2013), 4799–4808.
-
(2013)
J Clin Invest
, vol.123
, pp. 4799-4808
-
-
Morton, G.J.1
Matsen, M.E.2
Bracy, D.P.3
Meek, T.H.4
Nguyen, H.T.5
Stefanovski, D.6
Bergman, R.N.7
Wasserman, D.H.8
Schwartz, M.W.9
-
23
-
-
84871694003
-
Fibroblast growth factor-19 action in the brain reduces food intake and body weight and improves glucose tolerance in male rats
-
Ryan, K.K., Kohli, R., Gutierrez-Aguilar, R., Gaitonde, S.G., Woods, S.C., Seeley, R.J., Fibroblast growth factor-19 action in the brain reduces food intake and body weight and improves glucose tolerance in male rats. Endocrinology 154 (2013), 9–15.
-
(2013)
Endocrinology
, vol.154
, pp. 9-15
-
-
Ryan, K.K.1
Kohli, R.2
Gutierrez-Aguilar, R.3
Gaitonde, S.G.4
Woods, S.C.5
Seeley, R.J.6
-
24
-
-
84887075902
-
Fibroblast growth factor 19 entry into brain
-
Demonstration that FGF19 can enter the brain from the blood.
-
Hsuchou, H., Pan, W., Kastin, A.J., Fibroblast growth factor 19 entry into brain. Fluids Barriers CNS, 10, 2013, 32 Demonstration that FGF19 can enter the brain from the blood.
-
(2013)
Fluids Barriers CNS
, vol.10
, pp. 32
-
-
Hsuchou, H.1
Pan, W.2
Kastin, A.J.3
-
25
-
-
84911917697
-
Circulating fgf21 is liver derived and enhances glucose uptake during refeeding and overfeeding
-
This paper shows that, at least in response to nutritional stress, most (if not all) circulating FGF21is produced in the liver. It also shows that FGF21 may act in the immediate postprandial phase to stimulate glucose uptake in to the BAT.
-
Markan, K.R., Naber, M.C., Ameka, M.K., Anderegg, M.D., Mangelsdorf, D.J., Kliewer, S.A., Mohammadi, M., Potthoff, M.J., Circulating fgf21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes 63 (2014), 4057–4063 This paper shows that, at least in response to nutritional stress, most (if not all) circulating FGF21is produced in the liver. It also shows that FGF21 may act in the immediate postprandial phase to stimulate glucose uptake in to the BAT.
-
(2014)
Diabetes
, vol.63
, pp. 4057-4063
-
-
Markan, K.R.1
Naber, M.C.2
Ameka, M.K.3
Anderegg, M.D.4
Mangelsdorf, D.J.5
Kliewer, S.A.6
Mohammadi, M.7
Potthoff, M.J.8
-
26
-
-
84922915157
-
Fibroblast growth factor 21 is induced upon cardiac stress and alters cardiac lipid homeostasis
-
Brahma, M.K., Adam, R.C., Pollak, N.M., Jaeger, D., Zierler, K.A., Pocher, N., Schreiber, R., Romauch, M., Moustafa, T., Eder, S., Ruelicke, T., et al. Fibroblast growth factor 21 is induced upon cardiac stress and alters cardiac lipid homeostasis. J Lipid Res 55 (2014), 2229–2241.
-
(2014)
J Lipid Res
, vol.55
, pp. 2229-2241
-
-
Brahma, M.K.1
Adam, R.C.2
Pollak, N.M.3
Jaeger, D.4
Zierler, K.A.5
Pocher, N.6
Schreiber, R.7
Romauch, M.8
Moustafa, T.9
Eder, S.10
Ruelicke, T.11
-
27
-
-
84931577787
-
Genetic disruption of uncoupling protein 1 in mice renders brown adipose tissue a significant source of fgf21 secretion
-
Keipert, S., Kutschke, M., Lamp, D., Brachthauser, L., Neff, F., Meyer, C.W., Oelkrug, R., Kharitonenkov, A., Jastroch, M., Genetic disruption of uncoupling protein 1 in mice renders brown adipose tissue a significant source of fgf21 secretion. Mol Metab 4 (2015), 537–542.
-
(2015)
Mol Metab
, vol.4
, pp. 537-542
-
-
Keipert, S.1
Kutschke, M.2
Lamp, D.3
Brachthauser, L.4
Neff, F.5
Meyer, C.W.6
Oelkrug, R.7
Kharitonenkov, A.8
Jastroch, M.9
-
28
-
-
84865741904
-
Betaklotho is required for fibroblast growth factor 21 effects on growth and metabolism
-
Ding, X., Boney-Montoya, J., Owen, B.M., Bookout, A.L., Coate, K.C., Mangelsdorf, D.J., Kliewer, S.A., Betaklotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metab 16 (2012), 387–393.
-
(2012)
Cell Metab
, vol.16
, pp. 387-393
-
-
Ding, X.1
Boney-Montoya, J.2
Owen, B.M.3
Bookout, A.L.4
Coate, K.C.5
Mangelsdorf, D.J.6
Kliewer, S.A.7
-
29
-
-
84920483737
-
Tissue-specific actions of the metabolic hormones fgf15/19 and fgf21
-
Owen, B.M., Mangelsdorf, D.J., Kliewer, S.A., Tissue-specific actions of the metabolic hormones fgf15/19 and fgf21. Trends Endocrinol Metab 26 (2015), 22–29.
-
(2015)
Trends Endocrinol Metab
, vol.26
, pp. 22-29
-
-
Owen, B.M.1
Mangelsdorf, D.J.2
Kliewer, S.A.3
-
30
-
-
84883778996
-
Fgf21 regulates metabolism and circadian behavior by acting on the nervous system
-
This paper maps expression of the FGF21 receptor-complex in brain regions. It also shows that FGF21-dependent effects on metabolism and circadian behavior require signalling in the CNS.
-
Bookout, A.L., de Groot, M.H., Owen, B.M., Lee, S., Gautron, L., Lawrence, H.L., Ding, X., Elmquist, J.K., Takahashi, J.S., Mangelsdorf, D.J., Kliewer, S.A., Fgf21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med 19 (2013), 1147–1152 This paper maps expression of the FGF21 receptor-complex in brain regions. It also shows that FGF21-dependent effects on metabolism and circadian behavior require signalling in the CNS.
-
(2013)
Nat Med
, vol.19
, pp. 1147-1152
-
-
Bookout, A.L.1
de Groot, M.H.2
Owen, B.M.3
Lee, S.4
Gautron, L.5
Lawrence, H.L.6
Ding, X.7
Elmquist, J.K.8
Takahashi, J.S.9
Mangelsdorf, D.J.10
Kliewer, S.A.11
-
31
-
-
84908018672
-
Fgf21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss
-
This paper shows that FGF21 action on the brain induces expression of the stress-related corticotrophin releasing hormone (CRH). In turn, CRH activates the sympathetic nerve to the BAT which stimulates thermogenesis and weight loss in obese mice.
-
Owen, B.M., Ding, X., Morgan, D.A., Coate, K.C., Bookout, A.L., Rahmouni, K., Kliewer, S.A., Mangelsdorf, D.J., Fgf21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab 20 (2014), 670–677 This paper shows that FGF21 action on the brain induces expression of the stress-related corticotrophin releasing hormone (CRH). In turn, CRH activates the sympathetic nerve to the BAT which stimulates thermogenesis and weight loss in obese mice.
-
(2014)
Cell Metab
, vol.20
, pp. 670-677
-
-
Owen, B.M.1
Ding, X.2
Morgan, D.A.3
Coate, K.C.4
Bookout, A.L.5
Rahmouni, K.6
Kliewer, S.A.7
Mangelsdorf, D.J.8
-
32
-
-
84883763046
-
Fgf21 contributes to neuroendocrine control of female reproduction
-
Owen, B.M., Bookout, A.L., Ding, X., Lin, V.Y., Atkin, S.D., Gautron, L., Kliewer, S.A., Mangelsdorf, D.J., Fgf21 contributes to neuroendocrine control of female reproduction. Nat Med 19 (2013), 1153–1156.
-
(2013)
Nat Med
, vol.19
, pp. 1153-1156
-
-
Owen, B.M.1
Bookout, A.L.2
Ding, X.3
Lin, V.Y.4
Atkin, S.D.5
Gautron, L.6
Kliewer, S.A.7
Mangelsdorf, D.J.8
-
33
-
-
36148970418
-
The fasting polypeptide fgf21 can enter brain from blood
-
Hsuchou, H., Pan, W., Kastin, A.J., The fasting polypeptide fgf21 can enter brain from blood. Peptides 28 (2007), 2382–2386.
-
(2007)
Peptides
, vol.28
, pp. 2382-2386
-
-
Hsuchou, H.1
Pan, W.2
Kastin, A.J.3
-
34
-
-
34249686631
-
Endocrine regulation of the fasting response by pparalpha-mediated induction of fibroblast growth factor 21
-
Inagaki, T., Dutchak, P., Zhao, G., Ding, X., Gautron, L., Parameswara, V., Li, Y., Goetz, R., Mohammadi, M., Esser, V., Elmquist, J.K., et al. Endocrine regulation of the fasting response by pparalpha-mediated induction of fibroblast growth factor 21. Cell Metab 5 (2007), 415–425.
-
(2007)
Cell Metab
, vol.5
, pp. 415-425
-
-
Inagaki, T.1
Dutchak, P.2
Zhao, G.3
Ding, X.4
Gautron, L.5
Parameswara, V.6
Li, Y.7
Goetz, R.8
Mohammadi, M.9
Esser, V.10
Elmquist, J.K.11
-
35
-
-
84907015381
-
Fgf21 is an endocrine signal of protein restriction
-
Laeger, T., Henagan, T.M., Albarado, D.C., Redman, L.M., Bray, G.A., Noland, R.C., Munzberg, H., Hutson, S.M., Gettys, T.W., Schwartz, M.W., Morrison, C.D., Fgf21 is an endocrine signal of protein restriction. J Clin Invest 124 (2014), 3913–3922.
-
(2014)
J Clin Invest
, vol.124
, pp. 3913-3922
-
-
Laeger, T.1
Henagan, T.M.2
Albarado, D.C.3
Redman, L.M.4
Bray, G.A.5
Noland, R.C.6
Munzberg, H.7
Hutson, S.M.8
Gettys, T.W.9
Schwartz, M.W.10
Morrison, C.D.11
-
36
-
-
84878982912
-
Fgf21 mediates the lipid metabolism response to amino acid starvation
-
De Sousa-Coelho, A.L., Relat, J., Hondares, E., Perez-Marti, A., Ribas, F., Villarroya, F., Marrero, P.F., Haro, D., Fgf21 mediates the lipid metabolism response to amino acid starvation. J Lipid Res 54 (2013), 1786–1797.
-
(2013)
J Lipid Res
, vol.54
, pp. 1786-1797
-
-
De Sousa-Coelho, A.L.1
Relat, J.2
Hondares, E.3
Perez-Marti, A.4
Ribas, F.5
Villarroya, F.6
Marrero, P.F.7
Haro, D.8
-
37
-
-
70350322694
-
Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis
-
Badman, M.K., Koester, A., Flier, J.S., Kharitonenkov, A., Maratos-Flier, E., Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis. Endocrinology 150 (2009), 4931–4940.
-
(2009)
Endocrinology
, vol.150
, pp. 4931-4940
-
-
Badman, M.K.1
Koester, A.2
Flier, J.S.3
Kharitonenkov, A.4
Maratos-Flier, E.5
-
38
-
-
79960110157
-
The transcription factor cyclic amp-responsive element-binding protein h regulates triglyceride metabolism
-
Lee, J.H., Giannikopoulos, P., Duncan, S.A., Wang, J., Johansen, C.T., Brown, J.D., Plutzky, J., Hegele, R.A., Glimcher, L.H., Lee, A.H., The transcription factor cyclic amp-responsive element-binding protein h regulates triglyceride metabolism. Nat Med 17 (2011), 812–815.
-
(2011)
Nat Med
, vol.17
, pp. 812-815
-
-
Lee, J.H.1
Giannikopoulos, P.2
Duncan, S.A.3
Wang, J.4
Johansen, C.T.5
Brown, J.D.6
Plutzky, J.7
Hegele, R.A.8
Glimcher, L.H.9
Lee, A.H.10
-
39
-
-
67649823642
-
Fgf21 induces pgc-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response
-
Potthoff, M.J., Inagaki, T., Satapati, S., Ding, X., He, T., Goetz, R., Mohammadi, M., Finck, B.N., Mangelsdorf, D.J., Kliewer, S.A., Burgess, S.C., Fgf21 induces pgc-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci U S A 106 (2009), 10853–10858.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 10853-10858
-
-
Potthoff, M.J.1
Inagaki, T.2
Satapati, S.3
Ding, X.4
He, T.5
Goetz, R.6
Mohammadi, M.7
Finck, B.N.8
Mangelsdorf, D.J.9
Kliewer, S.A.10
Burgess, S.C.11
-
40
-
-
84863116228
-
Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor gamma
-
Wei, W., Dutchak, P.A., Wang, X., Ding, X., Wang, X., Bookout, A.L., Goetz, R., Mohammadi, M., Gerard, R.D., Dechow, P.C., Mangelsdorf, D.J., et al. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor gamma. Proc Natl Acad Sci U S A 109 (2012), 3143–3148.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 3143-3148
-
-
Wei, W.1
Dutchak, P.A.2
Wang, X.3
Ding, X.4
Wang, X.5
Bookout, A.L.6
Goetz, R.7
Mohammadi, M.8
Gerard, R.D.9
Dechow, P.C.10
Mangelsdorf, D.J.11
-
41
-
-
84881508008
-
The starvation hormone, fibroblast growth factor-21, extends lifespan in mice
-
Zhang, Y., Xie, Y., Berglund, E.D., Coate, K.C., He, T.T., Katafuchi, T., Xiao, G., Potthoff, M.J., Wei, W., Wan, Y., Yu, R.T., et al. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. eLife, 1, 2012, e00065.
-
(2012)
eLife
, vol.1
, pp. e00065
-
-
Zhang, Y.1
Xie, Y.2
Berglund, E.D.3
Coate, K.C.4
He, T.T.5
Katafuchi, T.6
Xiao, G.7
Potthoff, M.J.8
Wei, W.9
Wan, Y.10
Yu, R.T.11
-
42
-
-
45649085226
-
Inhibition of growth hormone signaling by the fasting-induced hormone fgf21
-
Inagaki, T., Lin, V.Y., Goetz, R., Mohammadi, M., Mangelsdorf, D.J., Kliewer, S.A., Inhibition of growth hormone signaling by the fasting-induced hormone fgf21. Cell Metab 8 (2008), 77–83.
-
(2008)
Cell Metab
, vol.8
, pp. 77-83
-
-
Inagaki, T.1
Lin, V.Y.2
Goetz, R.3
Mohammadi, M.4
Mangelsdorf, D.J.5
Kliewer, S.A.6
-
43
-
-
84865442538
-
Long-acting fgf21 has enhanced efficacy in diet-induced obese mice and in obese rhesus monkeys
-
Veniant, M.M., Komorowski, R., Chen, P., Stanislaus, S., Winters, K., Hager, T., Zhou, L., Wada, R., Hecht, R., Xu, J., Long-acting fgf21 has enhanced efficacy in diet-induced obese mice and in obese rhesus monkeys. Endocrinology 153 (2012), 4192–4203.
-
(2012)
Endocrinology
, vol.153
, pp. 4192-4203
-
-
Veniant, M.M.1
Komorowski, R.2
Chen, P.3
Stanislaus, S.4
Winters, K.5
Hager, T.6
Zhou, L.7
Wada, R.8
Hecht, R.9
Xu, J.10
-
44
-
-
84883481988
-
The effects of ly2405319, an fgf21 analog, in obese human subjects with type 2 diabetes
-
An FGF21 analog improves metabolic parameters in obese humans.
-
Gaich, G., Chien, J.Y., Fu, H., Glass, L.C., Deeg, M.A., Holland, W.L., Kharitonenkov, A., Bumol, T., Schilske, H.K., Moller, D.E., The effects of ly2405319, an fgf21 analog, in obese human subjects with type 2 diabetes. Cell Metab 18 (2013), 333–340 An FGF21 analog improves metabolic parameters in obese humans.
-
(2013)
Cell Metab
, vol.18
, pp. 333-340
-
-
Gaich, G.1
Chien, J.Y.2
Fu, H.3
Glass, L.C.4
Deeg, M.A.5
Holland, W.L.6
Kharitonenkov, A.7
Bumol, T.8
Schilske, H.K.9
Moller, D.E.10
-
45
-
-
84937604339
-
Central fibroblast growth factor 21 browns white fat via sympathetic action in male mice
-
Douris, N., Stevanovic, D.M., Fisher, F.M., Cisu, T.I., Chee, M.J., Nguyen, N.L., Zarebidaki, E., Adams, A.C., Kharitonenkov, A., Flier, J.S., Bartness, T.J., et al. Central fibroblast growth factor 21 browns white fat via sympathetic action in male mice. Endocrinology 156 (2015), 2470–2481.
-
(2015)
Endocrinology
, vol.156
, pp. 2470-2481
-
-
Douris, N.1
Stevanovic, D.M.2
Fisher, F.M.3
Cisu, T.I.4
Chee, M.J.5
Nguyen, N.L.6
Zarebidaki, E.7
Adams, A.C.8
Kharitonenkov, A.9
Flier, J.S.10
Bartness, T.J.11
-
46
-
-
84911917770
-
Fgf21 maintains glucose homeostasis by mediating the cross talk between liver and brain during prolonged fasting
-
Liang, Q., Zhong, L., Zhang, J., Wang, Y., Bornstein, S.R., Triggle, C.R., Ding, H., Lam, K.S., Xu, A., Fgf21 maintains glucose homeostasis by mediating the cross talk between liver and brain during prolonged fasting. Diabetes 63 (2014), 4064–4075.
-
(2014)
Diabetes
, vol.63
, pp. 4064-4075
-
-
Liang, Q.1
Zhong, L.2
Zhang, J.3
Wang, Y.4
Bornstein, S.R.5
Triggle, C.R.6
Ding, H.7
Lam, K.S.8
Xu, A.9
-
47
-
-
84929708081
-
Discrete aspects of fgf21 in vivo pharmacology do not require ucp1
-
Samms, R.J., Smith, D.P., Cheng, C.C., Antonellis, P.P., Perfield, J.W. 2nd, Kharitonenkov, A., Gimeno, R.E., Adams, A.C., Discrete aspects of fgf21 in vivo pharmacology do not require ucp1. Cell Rep 11 (2015), 991–999.
-
(2015)
Cell Rep
, vol.11
, pp. 991-999
-
-
Samms, R.J.1
Smith, D.P.2
Cheng, C.C.3
Antonellis, P.P.4
Perfield, J.W.5
Kharitonenkov, A.6
Gimeno, R.E.7
Adams, A.C.8
-
48
-
-
84930579383
-
Pharmacologic effects of fgf21 are independent of the “browning” of white adipose tissue
-
Veniant, M.M., Sivits, G., Helmering, J., Komorowski, R., Lee, J., Fan, W., Moyer, C., Lloyd, D.J., Pharmacologic effects of fgf21 are independent of the “browning” of white adipose tissue. Cell Metab 21 (2015), 731–738.
-
(2015)
Cell Metab
, vol.21
, pp. 731-738
-
-
Veniant, M.M.1
Sivits, G.2
Helmering, J.3
Komorowski, R.4
Lee, J.5
Fan, W.6
Moyer, C.7
Lloyd, D.J.8
-
49
-
-
84920451307
-
Interplay between fgf21 and insulin action in the liver regulates metabolism
-
Emanuelli, B., Vienberg, S.G., Smyth, G., Cheng, C., Stanford, K.I., Arumugam, M., Michael, M.D., Adams, A.C., Kharitonenkov, A., Kahn, C.R., Interplay between fgf21 and insulin action in the liver regulates metabolism. J Clin Invest, 125, 2015, 458.
-
(2015)
J Clin Invest
, vol.125
, pp. 458
-
-
Emanuelli, B.1
Vienberg, S.G.2
Smyth, G.3
Cheng, C.4
Stanford, K.I.5
Arumugam, M.6
Michael, M.D.7
Adams, A.C.8
Kharitonenkov, A.9
Kahn, C.R.10
-
50
-
-
84936966693
-
Fgf21 does not require interscapular brown adipose tissue and improves liver metabolic profile in animal models of obesity and insulin-resistance
-
11382
-
Bernardo, B., Lu, M., Bandyopadhyay, G., Li, P., Zhou, Y., Huang, J., Levin, N., Tomas, E.M., Calle, R.A., Erion, D.M., Rolph, T.P., et al. Fgf21 does not require interscapular brown adipose tissue and improves liver metabolic profile in animal models of obesity and insulin-resistance. Sci Rep, 5, 2015 11382.
-
(2015)
Sci Rep
, vol.5
-
-
Bernardo, B.1
Lu, M.2
Bandyopadhyay, G.3
Li, P.4
Zhou, Y.5
Huang, J.6
Levin, N.7
Tomas, E.M.8
Calle, R.A.9
Erion, D.M.10
Rolph, T.P.11
-
51
-
-
84879187565
-
Ly2405319, an engineered fgf21 variant, improves the metabolic status of diabetic monkeys
-
FGF21-dependent weight loss in diabetic monkeys may be due to decreased food-intake.
-
Adams, A.C., Halstead, C.A., Hansen, B.C., Irizarry, A.R., Martin, J.A., Myers, S.R., Reynolds, V.L., Smith, H.W., Wroblewski, V.J., Kharitonenkov, A., Ly2405319, an engineered fgf21 variant, improves the metabolic status of diabetic monkeys. PLoS One, 8, 2013, e65763 FGF21-dependent weight loss in diabetic monkeys may be due to decreased food-intake.
-
(2013)
PLoS One
, vol.8
, pp. e65763
-
-
Adams, A.C.1
Halstead, C.A.2
Hansen, B.C.3
Irizarry, A.R.4
Martin, J.A.5
Myers, S.R.6
Reynolds, V.L.7
Smith, H.W.8
Wroblewski, V.J.9
Kharitonenkov, A.10
-
52
-
-
84896943968
-
A short story of klotho and fgf23: a deuce of dark side or the savior?
-
Ersoy, F.F., A short story of klotho and fgf23: a deuce of dark side or the savior?. Int Urol Nephrol 46 (2014), 577–581.
-
(2014)
Int Urol Nephrol
, vol.46
, pp. 577-581
-
-
Ersoy, F.F.1
-
53
-
-
33845631059
-
Klotho converts canonical fgf receptor into a specific receptor for fgf23
-
Urakawa, I., Yamazaki, Y., Shimada, T., Iijima, K., Hasegawa, H., Okawa, K., Fujita, T., Fukumoto, S., Yamashita, T., Klotho converts canonical fgf receptor into a specific receptor for fgf23. Nature 444 (2006), 770–774.
-
(2006)
Nature
, vol.444
, pp. 770-774
-
-
Urakawa, I.1
Yamazaki, Y.2
Shimada, T.3
Iijima, K.4
Hasegawa, H.5
Okawa, K.6
Fujita, T.7
Fukumoto, S.8
Yamashita, T.9
-
54
-
-
1642416884
-
Targeted ablation of fgf23 demonstrates an essential physiological role of fgf23 in phosphate and vitamin d metabolism
-
Shimada, T., Kakitani, M., Yamazaki, Y., Hasegawa, H., Takeuchi, Y., Fujita, T., Fukumoto, S., Tomizuka, K., Yamashita, T., Targeted ablation of fgf23 demonstrates an essential physiological role of fgf23 in phosphate and vitamin d metabolism. J Clin Invest 113 (2004), 561–568.
-
(2004)
J Clin Invest
, vol.113
, pp. 561-568
-
-
Shimada, T.1
Kakitani, M.2
Yamazaki, Y.3
Hasegawa, H.4
Takeuchi, Y.5
Fujita, T.6
Fukumoto, S.7
Tomizuka, K.8
Yamashita, T.9
-
55
-
-
77956642900
-
Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule
-
Hu, M.C., Shi, M., Zhang, J., Pastor, J., Nakatani, T., Lanske, B., Razzaque, M.S., Rosenblatt, K.P., Baum, M.G., Kuro-o, M., Moe, O.W., Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J 24 (2010), 3438–3450.
-
(2010)
FASEB J
, vol.24
, pp. 3438-3450
-
-
Hu, M.C.1
Shi, M.2
Zhang, J.3
Pastor, J.4
Nakatani, T.5
Lanske, B.6
Razzaque, M.S.7
Rosenblatt, K.P.8
Baum, M.G.9
Kuro-o, M.10
Moe, O.W.11
-
56
-
-
33845322655
-
Acute effect of oral phosphate loading on serum fibroblast growth factor 23 levels in healthy men
-
Nishida, Y., Taketani, Y., Yamanaka-Okumura, H., Imamura, F., Taniguchi, A., Sato, T., Shuto, E., Nashiki, K., Arai, H., Yamamoto, H., Takeda, E., Acute effect of oral phosphate loading on serum fibroblast growth factor 23 levels in healthy men. Kidney Int 70 (2006), 2141–2147.
-
(2006)
Kidney Int
, vol.70
, pp. 2141-2147
-
-
Nishida, Y.1
Taketani, Y.2
Yamanaka-Okumura, H.3
Imamura, F.4
Taniguchi, A.5
Sato, T.6
Shuto, E.7
Nashiki, K.8
Arai, H.9
Yamamoto, H.10
Takeda, E.11
-
57
-
-
0035725506
-
Arterial calcifications, arterial stiffness, and cardiovascular risk in end-stage renal disease
-
Blacher, J., Guerin, A.P., Pannier, B., Marchais, S.J., London, G.M., Arterial calcifications, arterial stiffness, and cardiovascular risk in end-stage renal disease. Hypertension 38 (2001), 938–942.
-
(2001)
Hypertension
, vol.38
, pp. 938-942
-
-
Blacher, J.1
Guerin, A.P.2
Pannier, B.3
Marchais, S.J.4
London, G.M.5
-
58
-
-
84863583292
-
Fgf23 is independently associated with vascular calcification but not bone mineral density in patients at various ckd stages
-
Desjardins, L., Liabeuf, S., Renard, C., Lenglet, A., Lemke, H.D., Choukroun, G., Drueke, T.B., Massy, Z.A., European Uremic Toxin Work G. Fgf23 is independently associated with vascular calcification but not bone mineral density in patients at various ckd stages. Osteoporosis Int 23 (2012), 2017–2025.
-
(2012)
Osteoporosis Int
, vol.23
, pp. 2017-2025
-
-
Desjardins, L.1
Liabeuf, S.2
Renard, C.3
Lenglet, A.4
Lemke, H.D.5
Choukroun, G.6
Drueke, T.B.7
Massy, Z.A.8
-
59
-
-
42149130855
-
A translocation causing increased alpha-klotho level results in hypophosphatemic rickets and hyperparathyroidism
-
Brownstein, C.A., Adler, F., Nelson-Williams, C., Iijima, J., Li, P., Imura, A., Nabeshima, Y., Reyes-Mugica, M., Carpenter, T.O., Lifton, R.P., A translocation causing increased alpha-klotho level results in hypophosphatemic rickets and hyperparathyroidism. Proc Natl Acad Sci U S A 105 (2008), 3455–3460.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 3455-3460
-
-
Brownstein, C.A.1
Adler, F.2
Nelson-Williams, C.3
Iijima, J.4
Li, P.5
Imura, A.6
Nabeshima, Y.7
Reyes-Mugica, M.8
Carpenter, T.O.9
Lifton, R.P.10
-
60
-
-
84861047531
-
A ppargamma-fgf1 axis is required for adaptive adipose remodelling and metabolic homeostasis
-
Jonker, J.W., Suh, J.M., Atkins, A.R., Ahmadian, M., Li, P., Whyte, J., He, M., Juguilon, H., Yin, Y.Q., Phillips, C.T., Yu, R.T., et al. A ppargamma-fgf1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nature 485 (2012), 391–394.
-
(2012)
Nature
, vol.485
, pp. 391-394
-
-
Jonker, J.W.1
Suh, J.M.2
Atkins, A.R.3
Ahmadian, M.4
Li, P.5
Whyte, J.6
He, M.7
Juguilon, H.8
Yin, Y.Q.9
Phillips, C.T.10
Yu, R.T.11
-
61
-
-
84906826372
-
Endocrinization of fgf1 produces a neomorphic and potent insulin sensitizer
-
This paper shows that injection of recombinant FGF1 is a potential treatment for diabetes.
-
Suh, J.M., Jonker, J.W., Ahmadian, M., Goetz, R., Lackey, D., Osborn, O., Huang, Z., Liu, W., Yoshihara, E., van Dijk, T.H., Havinga, R., et al. Endocrinization of fgf1 produces a neomorphic and potent insulin sensitizer. Nature 513 (2014), 436–439 This paper shows that injection of recombinant FGF1 is a potential treatment for diabetes.
-
(2014)
Nature
, vol.513
, pp. 436-439
-
-
Suh, J.M.1
Jonker, J.W.2
Ahmadian, M.3
Goetz, R.4
Lackey, D.5
Osborn, O.6
Huang, Z.7
Liu, W.8
Yoshihara, E.9
van Dijk, T.H.10
Havinga, R.11
-
62
-
-
84928790920
-
Fgf1 and fgf19 reverse diabetes by suppression of the hypothalamic–pituitary–adrenal axis
-
Perry, R.J., Lee, S., Ma, L., Zhang, D., Schlessinger, J., Shulman, G.I., Fgf1 and fgf19 reverse diabetes by suppression of the hypothalamic–pituitary–adrenal axis. Nat Commun, 6, 2015, 6980.
-
(2015)
Nat Commun
, vol.6
, pp. 6980
-
-
Perry, R.J.1
Lee, S.2
Ma, L.3
Zhang, D.4
Schlessinger, J.5
Shulman, G.I.6
|