메뉴 건너뛰기




Volumn 109, Issue , 2016, Pages 55-68

Biocompatibility of implantable materials: An oxidative stress viewpoint

Author keywords

Biocompatibility; Biomaterials; Lipid peroxidation products; Oxidative stress; RNS; ROS

Indexed keywords

BIOCOMPATIBILITY; BIOMATERIALS; CELL SIGNALING; CELLS; CYTOLOGY; DEGRADATION; LIPIDS; MOLECULES; NEURODEGENERATIVE DISEASES; OXIDANTS; OXIDATION; PATHOLOGY; RADON;

EID: 84988484554     PISSN: 01429612     EISSN: 18785905     Source Type: Journal    
DOI: 10.1016/j.biomaterials.2016.09.010     Document Type: Review
Times cited : (175)

References (162)
  • 2
    • 0642365217 scopus 로고    scopus 로고
    • Revisiting the definition of biocompatibility
    • [2] Williams, D., Revisiting the definition of biocompatibility. Med. Device Technol. 14:8 (2003), 10–13.
    • (2003) Med. Device Technol. , vol.14 , Issue.8 , pp. 10-13
    • Williams, D.1
  • 3
    • 84921807363 scopus 로고    scopus 로고
    • Regulation of dendrimer/dextran material performance by altered tissue microenvironment in inflammation and neoplasia
    • p. 272ra11-272ra11
    • [3] Oliva, N., et al. Regulation of dendrimer/dextran material performance by altered tissue microenvironment in inflammation and neoplasia. Sci. Transl. Med., 7(272), 2015 p. 272ra11-272ra11.
    • (2015) Sci. Transl. Med. , vol.7 , Issue.272
    • Oliva, N.1
  • 4
    • 80051827048 scopus 로고    scopus 로고
    • Minimally invasive, longitudinal monitoring of biomaterial-associated inflammation by fluorescence imaging
    • [4] Selvam, S., et al. Minimally invasive, longitudinal monitoring of biomaterial-associated inflammation by fluorescence imaging. Biomaterials 32:31 (2011), 7785–7792.
    • (2011) Biomaterials , vol.32 , Issue.31 , pp. 7785-7792
    • Selvam, S.1
  • 5
    • 84912567774 scopus 로고    scopus 로고
    • In vivo fluorescence imaging of biomaterial-associated inflammation and infection in a minimally invasive manner
    • [5] Suri, S., et al. In vivo fluorescence imaging of biomaterial-associated inflammation and infection in a minimally invasive manner. J. Biomed. Mater. Res. A 103:1 (2015), 76–83.
    • (2015) J. Biomed. Mater. Res. A , vol.103 , Issue.1 , pp. 76-83
    • Suri, S.1
  • 6
    • 34848922715 scopus 로고    scopus 로고
    • An in vivo study of the host tissue response to subcutaneous implantation of PLGA- and/or porcine small intestinal submucosa-based scaffolds
    • [6] Kim, M.S., et al. An in vivo study of the host tissue response to subcutaneous implantation of PLGA- and/or porcine small intestinal submucosa-based scaffolds. Biomaterials 28:34 (2007), 5137–5143.
    • (2007) Biomaterials , vol.28 , Issue.34 , pp. 5137-5143
    • Kim, M.S.1
  • 7
    • 42049122100 scopus 로고    scopus 로고
    • Reduction of inflammatory reaction of poly(d,l-lactic-co-glycolic Acid) using demineralized bone particles
    • [7] Yoon, S.J., et al. Reduction of inflammatory reaction of poly(d,l-lactic-co-glycolic Acid) using demineralized bone particles. Tissue Eng. Part A 14:4 (2008), 539–547.
    • (2008) Tissue Eng. Part A , vol.14 , Issue.4 , pp. 539-547
    • Yoon, S.J.1
  • 8
    • 67649255876 scopus 로고    scopus 로고
    • A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish
    • [8] Niethammer, P., et al. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459:7249 (2009), 996–999.
    • (2009) Nature , vol.459 , Issue.7249 , pp. 996-999
    • Niethammer, P.1
  • 10
    • 84893716925 scopus 로고    scopus 로고
    • The role of oxidative stress during inflammatory processes
    • [10] Lugrin, J., et al. The role of oxidative stress during inflammatory processes. Biol. Chem. 395:2 (2014), 203–230.
    • (2014) Biol. Chem. , vol.395 , Issue.2 , pp. 203-230
    • Lugrin, J.1
  • 11
    • 4444355381 scopus 로고    scopus 로고
    • Stimulation of glutathione depletion, ROS production and cell cycle arrest of dental pulp cells and gingival epithelial cells by HEMA
    • [11] Chang, H.H., et al. Stimulation of glutathione depletion, ROS production and cell cycle arrest of dental pulp cells and gingival epithelial cells by HEMA. Biomaterials 26:7 (2005), 745–753.
    • (2005) Biomaterials , vol.26 , Issue.7 , pp. 745-753
    • Chang, H.H.1
  • 12
    • 15244360775 scopus 로고    scopus 로고
    • TEGDMA induces mitochondrial damage and oxidative stress in human gingival fibroblasts
    • [12] Lefeuvre, M., et al. TEGDMA induces mitochondrial damage and oxidative stress in human gingival fibroblasts. Biomaterials 26:25 (2005), 5130–5137.
    • (2005) Biomaterials , vol.26 , Issue.25 , pp. 5130-5137
    • Lefeuvre, M.1
  • 13
    • 33646761647 scopus 로고    scopus 로고
    • Comparative study of antioxidant enzymes in tissues surrounding implant in rabbits
    • [13] Ozmen, I., Naziroglu, M., Okutan, R., Comparative study of antioxidant enzymes in tissues surrounding implant in rabbits. Cell Biochem. Funct. 24:3 (2006), 275–281.
    • (2006) Cell Biochem. Funct. , vol.24 , Issue.3 , pp. 275-281
    • Ozmen, I.1    Naziroglu, M.2    Okutan, R.3
  • 14
    • 84988463769 scopus 로고    scopus 로고
    • The role of oxidative stress in the response of endothelial cells to metals
    • I. Antoniac Springer New York, NY New York
    • [14] Tsaryk, R., et al. The role of oxidative stress in the response of endothelial cells to metals. Antoniac, I., (eds.) Biologically Responsive Biomaterials for Tissue Engineering, 2013, Springer, New York, NY, 65–88 New York.
    • (2013) Biologically Responsive Biomaterials for Tissue Engineering , pp. 65-88
    • Tsaryk, R.1
  • 15
    • 84888639357 scopus 로고    scopus 로고
    • Chronic inflammation in biomaterial-induced periprosthetic osteolysis: NF-kappaB as a therapeutic target
    • [15] Lin, T.H., et al. Chronic inflammation in biomaterial-induced periprosthetic osteolysis: NF-kappaB as a therapeutic target. Acta Biomater. 10:1 (2014), 1–10.
    • (2014) Acta Biomater. , vol.10 , Issue.1 , pp. 1-10
    • Lin, T.H.1
  • 16
    • 85018217156 scopus 로고    scopus 로고
    • Oxidative Stress and Biomaterials
    • Academic Press
    • [16] Dziubla, T., Butterfield, D.A., Oxidative Stress and Biomaterials. 2016, Academic Press, 404.
    • (2016) , pp. 404
    • Dziubla, T.1    Butterfield, D.A.2
  • 17
    • 84894073629 scopus 로고    scopus 로고
    • Reactive oxygen species in inflammation and tissue injury
    • [17] Mittal, M., et al. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal 20:7 (2014), 1126–1167.
    • (2014) Antioxid. Redox Signal , vol.20 , Issue.7 , pp. 1126-1167
    • Mittal, M.1
  • 18
    • 84901316606 scopus 로고    scopus 로고
    • Cellular mechanisms and physiological consequences of redox-dependent signalling
    • [18] Holmstrom, K.M., Finkel, T., Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 15:6 (2014), 411–421.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , Issue.6 , pp. 411-421
    • Holmstrom, K.M.1    Finkel, T.2
  • 19
    • 84866432422 scopus 로고    scopus 로고
    • Reactive oxygen species: from health to disease
    • [19] Brieger, K., et al. Reactive oxygen species: from health to disease. Swiss Med. Wkly., 142, 2012, w13659.
    • (2012) Swiss Med. Wkly. , vol.142 , pp. w13659
    • Brieger, K.1
  • 20
    • 57849121240 scopus 로고    scopus 로고
    • Free radicals, antioxidants in disease and health
    • [20] Pham-Huy, L.A., He, H., Pham-Huy, C., Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. IJBS 4:2 (2008), 89–96.
    • (2008) Int. J. Biomed. Sci. IJBS , vol.4 , Issue.2 , pp. 89-96
    • Pham-Huy, L.A.1    He, H.2    Pham-Huy, C.3
  • 21
    • 33745662190 scopus 로고    scopus 로고
    • Reactive species and antioxidants. Redox biology is a fundamental theme of Aerobic life
    • [21] Halliwell, B., Reactive species and antioxidants. Redox biology is a fundamental theme of Aerobic life. Plant Physiol. 141:2 (2006), 312–322.
    • (2006) Plant Physiol. , vol.141 , Issue.2 , pp. 312-322
    • Halliwell, B.1
  • 22
    • 58249093636 scopus 로고    scopus 로고
    • Inflammation and oxidative stress in vertebrate host–parasite systems
    • [22] Sorci, G., Faivre, B., Inflammation and oxidative stress in vertebrate host–parasite systems. Philosophical Trans. R. Soc. Lond. B Biol. Sci. 364:1513 (2009), 71–83.
    • (2009) Philosophical Trans. R. Soc. Lond. B Biol. Sci. , vol.364 , Issue.1513 , pp. 71-83
    • Sorci, G.1    Faivre, B.2
  • 23
    • 84947743712 scopus 로고    scopus 로고
    • Clinical relevance of Biomarkers of oxidative stress
    • [23] Frijhoff, J., et al. Clinical relevance of Biomarkers of oxidative stress. Antioxidants Redox Signal. 23:14 (2015), 1144–1170.
    • (2015) Antioxidants Redox Signal. , vol.23 , Issue.14 , pp. 1144-1170
    • Frijhoff, J.1
  • 24
    • 0043172509 scopus 로고    scopus 로고
    • Basic aspects of the biochemical reactivity of 4-hydroxynonenal
    • [24] Schaur, R.J., Basic aspects of the biochemical reactivity of 4-hydroxynonenal. Mol. Asp. Med. 24:4–5 (2003), 149–159.
    • (2003) Mol. Asp. Med. , vol.24 , Issue.4-5 , pp. 149-159
    • Schaur, R.J.1
  • 25
    • 77956579179 scopus 로고    scopus 로고
    • Natural and synthetic antioxidants: an updated overview
    • [25] Augustyniak, A., et al. Natural and synthetic antioxidants: an updated overview. Free Radic. Res. 44:10 (2010), 1216–1262.
    • (2010) Free Radic. Res. , vol.44 , Issue.10 , pp. 1216-1262
    • Augustyniak, A.1
  • 26
    • 78049370987 scopus 로고    scopus 로고
    • Oxidative stress, inflammation, and cancer: how are they linked?
    • [26] Reuter, S., et al. Oxidative stress, inflammation, and cancer: how are they linked?. Free Radic. Biol. Med. 49:11 (2010), 1603–1616.
    • (2010) Free Radic. Biol. Med. , vol.49 , Issue.11 , pp. 1603-1616
    • Reuter, S.1
  • 27
    • 0034626735 scopus 로고    scopus 로고
    • Oxidants, oxidative stress and the biology of ageing
    • [27] Finkel, T., Holbrook, N.J., Oxidants, oxidative stress and the biology of ageing. Nature 408:6809 (2000), 239–247.
    • (2000) Nature , vol.408 , Issue.6809 , pp. 239-247
    • Finkel, T.1    Holbrook, N.J.2
  • 28
    • 33846863589 scopus 로고    scopus 로고
    • Nitric oxide and peroxynitrite in health and disease
    • [28] Pacher, P., Beckman, J.S., Liaudet, L., Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87:1 (2007), 315–424.
    • (2007) Physiol. Rev. , vol.87 , Issue.1 , pp. 315-424
    • Pacher, P.1    Beckman, J.S.2    Liaudet, L.3
  • 29
    • 84874122566 scopus 로고    scopus 로고
    • Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers
    • 19–19
    • [29] Li, X., et al. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J. Hematol. Oncol., 6, 2013 19–19.
    • (2013) J. Hematol. Oncol. , vol.6
    • Li, X.1
  • 30
    • 33847020833 scopus 로고    scopus 로고
    • Inflammation in wound repair: molecular and cellular mechanisms
    • [30] Eming, S.A., Krieg, T., Davidson, J.M., Inflammation in wound repair: molecular and cellular mechanisms. J. Investig. Dermatol 127:3 (2007), 514–525.
    • (2007) J. Investig. Dermatol , vol.127 , Issue.3 , pp. 514-525
    • Eming, S.A.1    Krieg, T.2    Davidson, J.M.3
  • 31
    • 51749088156 scopus 로고    scopus 로고
    • Redox regulation of cell survival
    • [31] Trachootham, D., et al. Redox regulation of cell survival. Antioxid. Redox Signal 10:8 (2008), 1343–1374.
    • (2008) Antioxid. Redox Signal , vol.10 , Issue.8 , pp. 1343-1374
    • Trachootham, D.1
  • 32
    • 84904573362 scopus 로고    scopus 로고
    • Redox-sensitive gene-regulatory events controlling aberrant matrix metalloproteinase-1 expression
    • [32] Bartling, T.R., et al. Redox-sensitive gene-regulatory events controlling aberrant matrix metalloproteinase-1 expression. Free Radic. Biol. Med. 74 (2014), 99–107.
    • (2014) Free Radic. Biol. Med. , vol.74 , pp. 99-107
    • Bartling, T.R.1
  • 33
    • 34447263031 scopus 로고    scopus 로고
    • Reactive oxygen species induce chondrocyte hypertrophy in endochondral ossification
    • [33] Morita, K., et al. Reactive oxygen species induce chondrocyte hypertrophy in endochondral ossification. J. Exp. Med. 204:7 (2007), 1613–1623.
    • (2007) J. Exp. Med. , vol.204 , Issue.7 , pp. 1613-1623
    • Morita, K.1
  • 34
    • 77949381018 scopus 로고    scopus 로고
    • Signaling mechanism(s) of reactive oxygen species in Epithelial-Mesenchymal Transition reminiscent of cancer stem cells in tumor progression
    • [34] Wang, Z., Li, Y., Sarkar, F.H., Signaling mechanism(s) of reactive oxygen species in Epithelial-Mesenchymal Transition reminiscent of cancer stem cells in tumor progression. Curr. Stem Cell Res. Ther. 5:1 (2010), 74–80.
    • (2010) Curr. Stem Cell Res. Ther. , vol.5 , Issue.1 , pp. 74-80
    • Wang, Z.1    Li, Y.2    Sarkar, F.H.3
  • 35
    • 12844257477 scopus 로고    scopus 로고
    • Redox modulation of cellular signaling and metabolism through reversible oxidation of methionine sensors in calcium regulatory proteins
    • [35] Bigelow, D.J., Squier, T.C., Redox modulation of cellular signaling and metabolism through reversible oxidation of methionine sensors in calcium regulatory proteins. Biochim. Biophys. Acta 1703:2 (2005), 121–134.
    • (2005) Biochim. Biophys. Acta , vol.1703 , Issue.2 , pp. 121-134
    • Bigelow, D.J.1    Squier, T.C.2
  • 36
    • 84901917562 scopus 로고    scopus 로고
    • Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-Hydroxy-2-Nonenal
    • [36] Ayala, A., Muñoz, M.F., Argüelles, S., Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Med. Cell. Longev., 2014, 2014, 31.
    • (2014) Oxidative Med. Cell. Longev. , vol.2014 , pp. 31
    • Ayala, A.1    Muñoz, M.F.2    Argüelles, S.3
  • 37
    • 84878761873 scopus 로고    scopus 로고
    • Oxidized phosphatidylcholines in membrane-level cellular signaling: from biophysics to physiology and molecular pathology
    • [37] Volinsky, R., Kinnunen, P.K., Oxidized phosphatidylcholines in membrane-level cellular signaling: from biophysics to physiology and molecular pathology. Febs J. 280:12 (2013), 2806–2816.
    • (2013) Febs J. , vol.280 , Issue.12 , pp. 2806-2816
    • Volinsky, R.1    Kinnunen, P.K.2
  • 38
    • 79955757695 scopus 로고    scopus 로고
    • Oxidative stress-mediated regulation of proteasome complexes
    • p. R110.006924
    • [38] Aiken, C.T., et al. Oxidative stress-mediated regulation of proteasome complexes. Mol. Cell Proteomics, 10(5), 2011 p. R110.006924.
    • (2011) Mol. Cell Proteomics , vol.10 , Issue.5
    • Aiken, C.T.1
  • 39
    • 51349122603 scopus 로고    scopus 로고
    • Nitric oxide elicits functional MMP-13 protein-tyrosine nitration during wound repair
    • [39] Lizarbe, T.R., et al. Nitric oxide elicits functional MMP-13 protein-tyrosine nitration during wound repair. Faseb J. 22:9 (2008), 3207–3215.
    • (2008) Faseb J. , vol.22 , Issue.9 , pp. 3207-3215
    • Lizarbe, T.R.1
  • 40
    • 64149106822 scopus 로고    scopus 로고
    • Oxidative modification of caspase-9 facilitates its activation via disulfide-mediated interaction with Apaf-1
    • [40] Zuo, Y., et al. Oxidative modification of caspase-9 facilitates its activation via disulfide-mediated interaction with Apaf-1. Cell Res. 19:4 (2009), 449–457.
    • (2009) Cell Res. , vol.19 , Issue.4 , pp. 449-457
    • Zuo, Y.1
  • 41
    • 79960556002 scopus 로고    scopus 로고
    • Immune responses to implants – a review of the implications for the design of immunomodulatory biomaterials
    • [41] Franz, S., et al. Immune responses to implants – a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 32:28 (2011), 6692–6709.
    • (2011) Biomaterials , vol.32 , Issue.28 , pp. 6692-6709
    • Franz, S.1
  • 42
    • 84977632287 scopus 로고    scopus 로고
    • Biomaterials Science: an Introduction to Materials in Medicine
    • third ed. Elsevier
    • [42] Ratner, B.D., et al. Biomaterials Science: an Introduction to Materials in Medicine. third ed., 2013, Elsevier.
    • (2013)
    • Ratner, B.D.1
  • 43
    • 84922333220 scopus 로고    scopus 로고
    • Remodelling the extracellular matrix in development and disease
    • [43] Bonnans, C., Chou, J., Werb, Z., Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15:12 (2014), 786–801.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , Issue.12 , pp. 786-801
    • Bonnans, C.1    Chou, J.2    Werb, Z.3
  • 44
    • 84905985979 scopus 로고    scopus 로고
    • Nox4: a hydrogen peroxide-generating oxygen sensor
    • [44] Nisimoto, Y., et al. Nox4: a hydrogen peroxide-generating oxygen sensor. Biochemistry 53:31 (2014), 5111–5120.
    • (2014) Biochemistry , vol.53 , Issue.31 , pp. 5111-5120
    • Nisimoto, Y.1
  • 45
    • 80055008140 scopus 로고    scopus 로고
    • Hydrogen peroxide: a Jekyll and Hyde signalling molecule
    • [45] Gough, D.R., Cotter, T.G., Hydrogen peroxide: a Jekyll and Hyde signalling molecule. Cell Death Dis., 2, 2011, e213.
    • (2011) Cell Death Dis. , vol.2 , pp. e213
    • Gough, D.R.1    Cotter, T.G.2
  • 46
    • 84921818947 scopus 로고    scopus 로고
    • Reciprocal activation between IL-6/STAT3 and NOX4/Akt signalings promotes proliferation and survival of non-small cell lung cancer cells
    • [46] Li, J., et al. Reciprocal activation between IL-6/STAT3 and NOX4/Akt signalings promotes proliferation and survival of non-small cell lung cancer cells. Oncotarget 6:2 (2015), 1031–1048.
    • (2015) Oncotarget , vol.6 , Issue.2 , pp. 1031-1048
    • Li, J.1
  • 47
    • 77953476933 scopus 로고    scopus 로고
    • Transcriptional regulation of NADPH oxidase isoforms, Nox1 and Nox4, by nuclear factor-kappaB in human aortic smooth muscle cells
    • [47] Manea, A., et al. Transcriptional regulation of NADPH oxidase isoforms, Nox1 and Nox4, by nuclear factor-kappaB in human aortic smooth muscle cells. Biochem. Biophys. Res. Commun. 396:4 (2010), 901–907.
    • (2010) Biochem. Biophys. Res. Commun. , vol.396 , Issue.4 , pp. 901-907
    • Manea, A.1
  • 48
    • 84933514292 scopus 로고    scopus 로고
    • Regulation of Nox enzymes expression in vascular pathophysiology: focusing on transcription factors and epigenetic mechanisms
    • [48] Manea, S.A., et al. Regulation of Nox enzymes expression in vascular pathophysiology: focusing on transcription factors and epigenetic mechanisms. Redox Biol. 5 (2015), 358–366.
    • (2015) Redox Biol. , vol.5 , pp. 358-366
    • Manea, S.A.1
  • 49
    • 84975307967 scopus 로고    scopus 로고
    • NRF2, a key regulator of antioxidants with two faces towards Cancer
    • [49] Kim, J., Keum, Y.-S., NRF2, a key regulator of antioxidants with two faces towards Cancer. Oxidative Med. Cell. Longev., 2016, 2016, 7.
    • (2016) Oxidative Med. Cell. Longev. , vol.2016 , pp. 7
    • Kim, J.1    Keum, Y.-S.2
  • 50
    • 84991213039 scopus 로고    scopus 로고
    • NF-kappaB activation in chronic lymphocytic leukemia: a point of convergence of external triggers and intrinsic lesions
    • August
    • [50] Mansouri, L., et al. NF-kappaB activation in chronic lymphocytic leukemia: a point of convergence of external triggers and intrinsic lesions. Semin. Cancer Biol. 39 (August 2016), 40–48, 10.1016/j.semcancer.2016.07.005.
    • (2016) Semin. Cancer Biol. , vol.39 , pp. 40-48
    • Mansouri, L.1
  • 51
    • 0003473397 scopus 로고
    • Talking point. Are free radicals involved in biodegradation of implanted polymers?
    • [51] Williams, D.F., Zhong, S.P., Talking point. Are free radicals involved in biodegradation of implanted polymers?. Adv. Mater. 3:12 (1991), 623–626.
    • (1991) Adv. Mater. , vol.3 , Issue.12 , pp. 623-626
    • Williams, D.F.1    Zhong, S.P.2
  • 52
    • 84946011218 scopus 로고    scopus 로고
    • Inflammation activation and resolution in human tendon disease
    • p. 311ra173
    • [52] Dakin, S.G., et al. Inflammation activation and resolution in human tendon disease. Sci. Transl. Med., 7(311), 2015 p. 311ra173.
    • (2015) Sci. Transl. Med. , vol.7 , Issue.311
    • Dakin, S.G.1
  • 53
    • 84875229002 scopus 로고    scopus 로고
    • Calcium flashes orchestrate the wound inflammatory response through DUOX activation and hydrogen peroxide release
    • [53] Razzell, W., et al. Calcium flashes orchestrate the wound inflammatory response through DUOX activation and hydrogen peroxide release. Curr. Biol. 23:5 (2013), 424–429.
    • (2013) Curr. Biol. , vol.23 , Issue.5 , pp. 424-429
    • Razzell, W.1
  • 54
    • 41149118513 scopus 로고    scopus 로고
    • How dying cells alert the immune system to danger
    • [54] Kono, H., Rock, K.L., How dying cells alert the immune system to danger. Nat. Rev. Immunol. 8:4 (2008), 279–289.
    • (2008) Nat. Rev. Immunol. , vol.8 , Issue.4 , pp. 279-289
    • Kono, H.1    Rock, K.L.2
  • 55
    • 84872041743 scopus 로고    scopus 로고
    • Reactive oxygen species (ROS)–a family of fate deciding molecules pivotal in constructive inflammation and wound healing
    • [55] Bryan, N., et al. Reactive oxygen species (ROS)–a family of fate deciding molecules pivotal in constructive inflammation and wound healing. Eur. Cell Mater. 24 (2012), 249–265.
    • (2012) Eur. Cell Mater. , vol.24 , pp. 249-265
    • Bryan, N.1
  • 56
    • 83455176409 scopus 로고    scopus 로고
    • Toll-like receptor 4 activates NF-kappaB and MAP kinase pathways to regulate expression of proinflammatory COX-2 in renal medullary collecting duct cells
    • [56] Kuper, C., Beck, F.X., Neuhofer, W., Toll-like receptor 4 activates NF-kappaB and MAP kinase pathways to regulate expression of proinflammatory COX-2 in renal medullary collecting duct cells. Am. J. Physiol. Ren. Physiol. 302:1 (2012), F38–F46.
    • (2012) Am. J. Physiol. Ren. Physiol. , vol.302 , Issue.1 , pp. F38-F46
    • Kuper, C.1    Beck, F.X.2    Neuhofer, W.3
  • 57
    • 84856947469 scopus 로고    scopus 로고
    • Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5
    • [57] Buxade, M., et al. Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5. J. Exp. Med. 209:2 (2012), 379–393.
    • (2012) J. Exp. Med. , vol.209 , Issue.2 , pp. 379-393
    • Buxade, M.1
  • 58
    • 0029124111 scopus 로고
    • Oxidative-stress response in vascular endothelial cells exposed to acellular hemoglobin solutions
    • [58] Motterlini, R., et al. Oxidative-stress response in vascular endothelial cells exposed to acellular hemoglobin solutions. Am. J. Physiol. 269:2 Pt 2 (1995), H648–H655.
    • (1995) Am. J. Physiol. , vol.269 , Issue.2 , pp. H648-H655
    • Motterlini, R.1
  • 59
    • 0031056208 scopus 로고    scopus 로고
    • The toxicities of native and modified hemoglobins
    • [59] Everse, J., Hsia, N., The toxicities of native and modified hemoglobins. Free Radic. Biol. Med. 22:6 (1997), 1075–1099.
    • (1997) Free Radic. Biol. Med. , vol.22 , Issue.6 , pp. 1075-1099
    • Everse, J.1    Hsia, N.2
  • 60
    • 34347379422 scopus 로고    scopus 로고
    • Hypoxia-induced reactive oxygen species formation in skeletal muscle
    • [60] Clanton, T.L., Hypoxia-induced reactive oxygen species formation in skeletal muscle. J. Appl. Physiol. 102:6 (2007), 2379–2388.
    • (2007) J. Appl. Physiol. , vol.102 , Issue.6 , pp. 2379-2388
    • Clanton, T.L.1
  • 61
    • 33645688912 scopus 로고    scopus 로고
    • Hyperoxia-induced reactive oxygen species formation in pulmonary capillary endothelial cells in situ
    • [61] Brueckl, C., et al. Hyperoxia-induced reactive oxygen species formation in pulmonary capillary endothelial cells in situ. Am. J. Respir. Cell Mol. Biol. 34:4 (2006), 453–463.
    • (2006) Am. J. Respir. Cell Mol. Biol. , vol.34 , Issue.4 , pp. 453-463
    • Brueckl, C.1
  • 62
    • 84910075599 scopus 로고    scopus 로고
    • Peritoneal air exposure elicits an intestinal inflammation resulting in postoperative ileus
    • [62] Tan, S., et al. Peritoneal air exposure elicits an intestinal inflammation resulting in postoperative ileus. Mediat. Inflamm., 2014, 2014, 11.
    • (2014) Mediat. Inflamm. , vol.2014 , pp. 11
    • Tan, S.1
  • 63
    • 0033838528 scopus 로고    scopus 로고
    • Complement activation after oxidative stress: role of the lectin complement pathway
    • [63] Collard, C.D., et al. Complement activation after oxidative stress: role of the lectin complement pathway. Am. J. Pathol. 156:5 (2000), 1549–1556.
    • (2000) Am. J. Pathol. , vol.156 , Issue.5 , pp. 1549-1556
    • Collard, C.D.1
  • 64
    • 40849094515 scopus 로고    scopus 로고
    • Foreign body reaction to biomaterials
    • [64] Anderson, J.M., Rodriguez, A., Chang, D.T., Foreign body reaction to biomaterials. Semin. Immunol. 20:2 (2008), 86–100.
    • (2008) Semin. Immunol. , vol.20 , Issue.2 , pp. 86-100
    • Anderson, J.M.1    Rodriguez, A.2    Chang, D.T.3
  • 65
    • 80055054447 scopus 로고    scopus 로고
    • Short-term and long-term effects of orthopedic biodegradable implants
    • [65] Amini, A.R., Wallace, J.S., Nukavarapu, S.P., Short-term and long-term effects of orthopedic biodegradable implants. J. Long. Term. Eff. Med. Implants 21:2 (2011), 93–122.
    • (2011) J. Long. Term. Eff. Med. Implants , vol.21 , Issue.2 , pp. 93-122
    • Amini, A.R.1    Wallace, J.S.2    Nukavarapu, S.P.3
  • 66
    • 79957774659 scopus 로고    scopus 로고
    • Why does chronic inflammation persist: an unexpected role for fibroblasts
    • [66] Buckley, C.D., Why does chronic inflammation persist: an unexpected role for fibroblasts. Immunol. Lett. 138:1 (2011), 12–14.
    • (2011) Immunol. Lett. , vol.138 , Issue.1 , pp. 12-14
    • Buckley, C.D.1
  • 67
    • 0003742197 scopus 로고    scopus 로고
    • Wound Closure Biomaterials and Devices
    • CRC Press
    • [67] Chu, C.-C., von Fraunhofer, J.A., Greisler, H.P., Wound Closure Biomaterials and Devices. 1996, CRC Press, 416.
    • (1996) , pp. 416
    • Chu, C.-C.1    von Fraunhofer, J.A.2    Greisler, H.P.3
  • 68
    • 34247139676 scopus 로고    scopus 로고
    • Oxidative stress and macrophage function: a failure to resolve the inflammatory response
    • [68] Kirkham, P., Oxidative stress and macrophage function: a failure to resolve the inflammatory response. Biochem. Soc. Trans. 35:Pt 2 (2007), 284–287.
    • (2007) Biochem. Soc. Trans. , vol.35 , pp. 284-287
    • Kirkham, P.1
  • 69
    • 84904394690 scopus 로고    scopus 로고
    • Macrophage activation and polarization: nomenclature and experimental guidelines
    • [69] Murray, P.J., et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41:1 (2014), 14–20.
    • (2014) Immunity , vol.41 , Issue.1 , pp. 14-20
    • Murray, P.J.1
  • 70
    • 84856530367 scopus 로고    scopus 로고
    • Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials
    • [70] Brown, B.N., et al. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta biomater. 8:3 (2012), 978–987.
    • (2012) Acta biomater. , vol.8 , Issue.3 , pp. 978-987
    • Brown, B.N.1
  • 71
    • 84952630652 scopus 로고    scopus 로고
    • Specialized pro-resolving mediators: endogenous regulators of infection and inflammation
    • [71] Basil, M.C., Levy, B.D., Specialized pro-resolving mediators: endogenous regulators of infection and inflammation. Nat. Rev. Immunol. 16:1 (2016), 51–67.
    • (2016) Nat. Rev. Immunol. , vol.16 , Issue.1 , pp. 51-67
    • Basil, M.C.1    Levy, B.D.2
  • 72
    • 84879880775 scopus 로고    scopus 로고
    • ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages
    • [72] Zhang, Y., et al. ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res. 23:7 (2013), 898–914.
    • (2013) Cell Res. , vol.23 , Issue.7 , pp. 898-914
    • Zhang, Y.1
  • 73
    • 33846373694 scopus 로고    scopus 로고
    • Macrophage fusion induced by IL-4 alternative activation is a multistage process involving multiple target molecules
    • [73] Helming, L., Gordon, S., Macrophage fusion induced by IL-4 alternative activation is a multistage process involving multiple target molecules. Eur. J. Immunol. 37:1 (2007), 33–42.
    • (2007) Eur. J. Immunol. , vol.37 , Issue.1 , pp. 33-42
    • Helming, L.1    Gordon, S.2
  • 74
    • 53349160071 scopus 로고    scopus 로고
    • Redox regulation of interleukin-4 signaling
    • [74] Sharma, P., et al. Redox regulation of interleukin-4 signaling. Immunity 29:4 (2008), 551–564.
    • (2008) Immunity , vol.29 , Issue.4 , pp. 551-564
    • Sharma, P.1
  • 75
    • 84865459821 scopus 로고    scopus 로고
    • Differential functional effects of biomaterials on dendritic cell maturation
    • [75] Park, J., Babensee, J.E., Differential functional effects of biomaterials on dendritic cell maturation. Acta Biomater. 8:10 (2012), 3606–3617.
    • (2012) Acta Biomater. , vol.8 , Issue.10 , pp. 3606-3617
    • Park, J.1    Babensee, J.E.2
  • 76
    • 84925357881 scopus 로고    scopus 로고
    • Functional manipulation of dendritic cells by photoswitchable generation of intracellular reactive oxygen species
    • [76] Cheong, T.-C., et al. Functional manipulation of dendritic cells by photoswitchable generation of intracellular reactive oxygen species. ACS Chem. Biol. 10:3 (2015), 757–765.
    • (2015) ACS Chem. Biol. , vol.10 , Issue.3 , pp. 757-765
    • Cheong, T.-C.1
  • 77
    • 84904998277 scopus 로고    scopus 로고
    • The mechanisms of up-regulation of dendritic cell activity by oxidative stress
    • [77] Batal, I., et al. The mechanisms of up-regulation of dendritic cell activity by oxidative stress. J. Leukoc. Biol. 96:2 (2014), 283–293.
    • (2014) J. Leukoc. Biol. , vol.96 , Issue.2 , pp. 283-293
    • Batal, I.1
  • 78
    • 84925546388 scopus 로고    scopus 로고
    • Dendritic cell metabolism
    • [78] Pearce, E.J., Everts, B., Dendritic cell metabolism. Nat. Rev. Immunol. 15:1 (2015), 18–29.
    • (2015) Nat. Rev. Immunol. , vol.15 , Issue.1 , pp. 18-29
    • Pearce, E.J.1    Everts, B.2
  • 79
    • 0042834309 scopus 로고    scopus 로고
    • Generation and function of reactive oxygen species in dendritic cells during antigen presentation
    • [79] Matsue, H., et al. Generation and function of reactive oxygen species in dendritic cells during antigen presentation. J. Immunol. 171:6 (2003), 3010–3018.
    • (2003) J. Immunol. , vol.171 , Issue.6 , pp. 3010-3018
    • Matsue, H.1
  • 80
    • 0037780966 scopus 로고    scopus 로고
    • Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion
    • [80] Chiarugi, P., et al. Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J. Cell Biol. 161:5 (2003), 933–944.
    • (2003) J. Cell Biol. , vol.161 , Issue.5 , pp. 933-944
    • Chiarugi, P.1
  • 81
    • 34247100991 scopus 로고    scopus 로고
    • Cell proliferation, reactive oxygen and cellular glutathione
    • [81] Day, R.M., Suzuki, Y.J., Cell proliferation, reactive oxygen and cellular glutathione. Dose-Response 3:3 (2005), 425–442.
    • (2005) Dose-Response , vol.3 , Issue.3 , pp. 425-442
    • Day, R.M.1    Suzuki, Y.J.2
  • 82
    • 22544453858 scopus 로고    scopus 로고
    • Intracellular reactive oxygen species activate src tyrosine kinase during cell adhesion and Anchorage-dependent cell growth
    • [82] Giannoni, E., et al. Intracellular reactive oxygen species activate src tyrosine kinase during cell adhesion and Anchorage-dependent cell growth. Mol. Cell. Biol. 25:15 (2005), 6391–6403.
    • (2005) Mol. Cell. Biol. , vol.25 , Issue.15 , pp. 6391-6403
    • Giannoni, E.1
  • 83
    • 84908428915 scopus 로고    scopus 로고
    • Stem cells and the impact of ROS signaling
    • [83] Bigarella, C.L., Liang, R., Ghaffari, S., Stem cells and the impact of ROS signaling. Development 141:22 (2014), 4206–4218.
    • (2014) Development , vol.141 , Issue.22 , pp. 4206-4218
    • Bigarella, C.L.1    Liang, R.2    Ghaffari, S.3
  • 84
    • 77950523031 scopus 로고    scopus 로고
    • Reactive oxygen species enhance differentiation of human embryonic stem cells into mesendodermal lineage
    • [84] Ji, A.-R., et al. Reactive oxygen species enhance differentiation of human embryonic stem cells into mesendodermal lineage. Exp. Mol. Med. 42 (2010), 175–186.
    • (2010) Exp. Mol. Med. , vol.42 , pp. 175-186
    • Ji, A.-R.1
  • 85
    • 79951792636 scopus 로고    scopus 로고
    • Modulation of neuronal stem cell differentiation by hypoxia and reactive oxygen species
    • [85] Vieira, H.L.A., Alves, P.M., Vercelli, A., Modulation of neuronal stem cell differentiation by hypoxia and reactive oxygen species. Prog. Neurobiol. 93:3 (2011), 444–455.
    • (2011) Prog. Neurobiol. , vol.93 , Issue.3 , pp. 444-455
    • Vieira, H.L.A.1    Alves, P.M.2    Vercelli, A.3
  • 86
    • 84936746182 scopus 로고    scopus 로고
    • Overview on major lipid peroxidation bioactive factor 4-hydroxynonenal as pluripotent growth-regulating factor
    • [86] Milkovic, L., Cipak Gasparovic, A., Zarkovic, N., Overview on major lipid peroxidation bioactive factor 4-hydroxynonenal as pluripotent growth-regulating factor. Free Radic. Res. 49:7 (2015), 850–860.
    • (2015) Free Radic. Res. , vol.49 , Issue.7 , pp. 850-860
    • Milkovic, L.1    Cipak Gasparovic, A.2    Zarkovic, N.3
  • 87
    • 84887620267 scopus 로고    scopus 로고
    • Cell death and diseases related to oxidative stress: 4-hydroxynonenal (HNE) in the balance
    • [87] Dalleau, S., et al. Cell death and diseases related to oxidative stress: 4-hydroxynonenal (HNE) in the balance. Cell Death Differ. 20:12 (2013), 1615–1630.
    • (2013) Cell Death Differ. , vol.20 , Issue.12 , pp. 1615-1630
    • Dalleau, S.1
  • 88
    • 78650994191 scopus 로고    scopus 로고
    • Real-time in vivo detection of biomaterial-induced reactive oxygen species
    • [88] Liu, W.F., et al. Real-time in vivo detection of biomaterial-induced reactive oxygen species. Biomaterials 32:7 (2011), 1796–1801.
    • (2011) Biomaterials , vol.32 , Issue.7 , pp. 1796-1801
    • Liu, W.F.1
  • 89
    • 84957945037 scopus 로고    scopus 로고
    • Modulation of ROS levels in fibroblasts by altering mitochondria regulates the process of wound healing
    • [89] Janda, J., et al. Modulation of ROS levels in fibroblasts by altering mitochondria regulates the process of wound healing. Arch. Dermatol Res. 308:4 (2016), 239–248.
    • (2016) Arch. Dermatol Res. , vol.308 , Issue.4 , pp. 239-248
    • Janda, J.1
  • 90
    • 28944443107 scopus 로고    scopus 로고
    • Oxidative stress in chronic venous leg ulcers
    • [90] Wlaschek, M., Scharffetter-Kochanek, K., Oxidative stress in chronic venous leg ulcers. Wound Repair Regen. 13:5 (2005), 452–461.
    • (2005) Wound Repair Regen. , vol.13 , Issue.5 , pp. 452-461
    • Wlaschek, M.1    Scharffetter-Kochanek, K.2
  • 92
    • 0034995893 scopus 로고    scopus 로고
    • Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts
    • [92] Siwik, D.A., Pagano, P.J., Colucci, W.S., Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am. J. Physiol. Cell Physiol. 280:1 (2001), C53–C60.
    • (2001) Am. J. Physiol. Cell Physiol. , vol.280 , Issue.1 , pp. C53-C60
    • Siwik, D.A.1    Pagano, P.J.2    Colucci, W.S.3
  • 93
    • 84866390484 scopus 로고    scopus 로고
    • Nox4 involvement in TGF-beta and SMAD3-driven induction of the epithelial-to-mesenchymal transition and migration of breast epithelial cells
    • [93] Boudreau, H.E., et al. Nox4 involvement in TGF-beta and SMAD3-driven induction of the epithelial-to-mesenchymal transition and migration of breast epithelial cells. Free Radic. Biol. Med. 53:7 (2012), 1489–1499.
    • (2012) Free Radic. Biol. Med. , vol.53 , Issue.7 , pp. 1489-1499
    • Boudreau, H.E.1
  • 94
    • 27644456575 scopus 로고    scopus 로고
    • NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts
    • [94] Cucoranu, I., et al. NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ. Res. 97:9 (2005), 900–907.
    • (2005) Circ. Res. , vol.97 , Issue.9 , pp. 900-907
    • Cucoranu, I.1
  • 95
    • 75149174337 scopus 로고    scopus 로고
    • NAD(P)H oxidase mediates TGF-beta1-induced activation of kidney myofibroblasts
    • [95] Bondi, C.D., et al. NAD(P)H oxidase mediates TGF-beta1-induced activation of kidney myofibroblasts. J. Am. Soc. Nephrol. 21:1 (2010), 93–102.
    • (2010) J. Am. Soc. Nephrol. , vol.21 , Issue.1 , pp. 93-102
    • Bondi, C.D.1
  • 96
    • 84961140438 scopus 로고    scopus 로고
    • UHMWPE Biomaterials Handbook. Ultra High Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices
    • William Andrew
    • [96] Kurtz, S., UHMWPE Biomaterials Handbook. Ultra High Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices. 2015, William Andrew.
    • (2015)
    • Kurtz, S.1
  • 97
    • 0027625047 scopus 로고
    • Mechanisms of polymer degradation in implantable devices. I. Poly(caprolactone)
    • [97] Ali, S.A., et al. Mechanisms of polymer degradation in implantable devices. I. Poly(caprolactone). Biomaterials 14:9 (1993), 648–656.
    • (1993) Biomaterials , vol.14 , Issue.9 , pp. 648-656
    • Ali, S.A.1
  • 98
    • 0028380756 scopus 로고
    • The mechanisms of oxidative degradation of biomedical polymers by free radicals
    • [98] Ali, S.A.M., Doherty, P.J., Williams, D.F., The mechanisms of oxidative degradation of biomedical polymers by free radicals. J. Appl. Polym. Sci. 51:8 (1994), 1389–1398.
    • (1994) J. Appl. Polym. Sci. , vol.51 , Issue.8 , pp. 1389-1398
    • Ali, S.A.M.1    Doherty, P.J.2    Williams, D.F.3
  • 99
    • 84906783825 scopus 로고    scopus 로고
    • Biodegradation of medical purpose polymeric materials and their impact on biocompatibility
    • R. Chamy InTech
    • [99] Tamariz, E., Rios-Ramírez, A., Biodegradation of medical purpose polymeric materials and their impact on biocompatibility. Chamy, R., (eds.) Biodegradation – Life of Science, 2013, InTech.
    • (2013) Biodegradation – Life of Science
    • Tamariz, E.1    Rios-Ramírez, A.2
  • 100
    • 84988519220 scopus 로고    scopus 로고
    • Developing biomaterials for the Attenuation of oxidative stress
    • Northwestern university Evanston Illinois
    • [100] van Lith, R., Developing biomaterials for the Attenuation of oxidative stress. Biomedical Engineering, 2014, Northwestern university Evanston, Illinois.
    • (2014) Biomedical Engineering
    • van Lith, R.1
  • 101
    • 70350077038 scopus 로고    scopus 로고
    • Molecular toxicology of substances released from resin-based dental restorative materials
    • [101] Bakopoulou, A., Papadopoulos, T., Garefis, P., Molecular toxicology of substances released from resin-based dental restorative materials. Int. J. Mol. Sci. 10:9 (2009), 3861–3899.
    • (2009) Int. J. Mol. Sci. , vol.10 , Issue.9 , pp. 3861-3899
    • Bakopoulou, A.1    Papadopoulos, T.2    Garefis, P.3
  • 102
    • 84875823839 scopus 로고    scopus 로고
    • A review of adaptive mechanisms in cell responses towards oxidative stress caused by dental resin monomers
    • [102] Krifka, S., et al. A review of adaptive mechanisms in cell responses towards oxidative stress caused by dental resin monomers. Biomaterials 34:19 (2013), 4555–4563.
    • (2013) Biomaterials , vol.34 , Issue.19 , pp. 4555-4563
    • Krifka, S.1
  • 103
    • 84896489284 scopus 로고    scopus 로고
    • On the biodegradability of polyethylene glycol, polypeptoids and poly(2-oxazoline)s
    • [103] Ulbricht, J., Jordan, R., Luxenhofer, R., On the biodegradability of polyethylene glycol, polypeptoids and poly(2-oxazoline)s. Biomaterials 35:17 (2014), 4848–4861.
    • (2014) Biomaterials , vol.35 , Issue.17 , pp. 4848-4861
    • Ulbricht, J.1    Jordan, R.2    Luxenhofer, R.3
  • 104
    • 84875377871 scopus 로고    scopus 로고
    • Analysis of wear, wear particles, and reduced inflammatory potential of vitamin E ultrahigh-molecular-weight polyethylene for use in total joint replacement
    • [104] Bladen, C.L., et al. Analysis of wear, wear particles, and reduced inflammatory potential of vitamin E ultrahigh-molecular-weight polyethylene for use in total joint replacement. J. Biomed. Mater. Res. B Appl. Biomater. 101:3 (2013), 458–466.
    • (2013) J. Biomed. Mater. Res. B Appl. Biomater. , vol.101 , Issue.3 , pp. 458-466
    • Bladen, C.L.1
  • 105
    • 64749093393 scopus 로고    scopus 로고
    • Catalase overexpression reduces lactic acid-induced oxidative stress in Saccharomyces cerevisiae
    • [105] Abbott, D.A., et al. Catalase overexpression reduces lactic acid-induced oxidative stress in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 75:8 (2009), 2320–2325.
    • (2009) Appl. Environ. Microbiol. , vol.75 , Issue.8 , pp. 2320-2325
    • Abbott, D.A.1
  • 106
    • 34447331304 scopus 로고    scopus 로고
    • Phagocyte responses to degradable polymers
    • [106] Jiang, W.W., et al. Phagocyte responses to degradable polymers. J. Biomed. Mater. Res. A 82:2 (2007), 492–497.
    • (2007) J. Biomed. Mater. Res. A , vol.82 , Issue.2 , pp. 492-497
    • Jiang, W.W.1
  • 107
    • 0035071662 scopus 로고    scopus 로고
    • The effects of extracellular pH on immune function
    • [107] Lardner, A., The effects of extracellular pH on immune function. J. Leukoc. Biol. 69:4 (2001), 522–530.
    • (2001) J. Leukoc. Biol. , vol.69 , Issue.4 , pp. 522-530
    • Lardner, A.1
  • 108
    • 84861348632 scopus 로고    scopus 로고
    • ROS-mediated apoptotic cell death in prostate cancer LNCaP cells induced by biosurfactant stabilized CdS quantum dots
    • [108] Singh, B.R., et al. ROS-mediated apoptotic cell death in prostate cancer LNCaP cells induced by biosurfactant stabilized CdS quantum dots. Biomaterials 33:23 (2012), 5753–5767.
    • (2012) Biomaterials , vol.33 , Issue.23 , pp. 5753-5767
    • Singh, B.R.1
  • 109
    • 20444395810 scopus 로고    scopus 로고
    • Transitory oxidative stress in L929 fibroblasts cultured on poly(epsilon-caprolactone) films
    • [109] Serrano, M.C., et al. Transitory oxidative stress in L929 fibroblasts cultured on poly(epsilon-caprolactone) films. Biomaterials 26:29 (2005), 5827–5834.
    • (2005) Biomaterials , vol.26 , Issue.29 , pp. 5827-5834
    • Serrano, M.C.1
  • 110
    • 84988500779 scopus 로고    scopus 로고
    • Long term effect of biodegradable polymer on oxidative stress and genotoxicity
    • [110] Surendran, D., et al. Long term effect of biodegradable polymer on oxidative stress and genotoxicity. BIO 2 (2012), 37–46.
    • (2012) BIO , vol.2 , pp. 37-46
    • Surendran, D.1
  • 111
    • 40649127990 scopus 로고    scopus 로고
    • Immune response to biologic scaffold materials
    • [111] Badylak, S.F., Gilbert, T.W., Immune response to biologic scaffold materials. Seminars Immunol. 20:2 (2008), 109–116.
    • (2008) Seminars Immunol. , vol.20 , Issue.2 , pp. 109-116
    • Badylak, S.F.1    Gilbert, T.W.2
  • 112
    • 43049104500 scopus 로고    scopus 로고
    • Fragments of extracellular matrix as mediators of inflammation
    • [112] Adair-Kirk, T.L., Senior, R.M., Fragments of extracellular matrix as mediators of inflammation. Int. J. Biochem. Cell Biol. 40:6–7 (2008), 1101–1110.
    • (2008) Int. J. Biochem. Cell Biol. , vol.40 , Issue.6-7 , pp. 1101-1110
    • Adair-Kirk, T.L.1    Senior, R.M.2
  • 113
    • 85008248810 scopus 로고    scopus 로고
    • Decellularized matrices for cardiovascular tissue engineering
    • [113] Moroni, F., Mirabella, T., Decellularized matrices for cardiovascular tissue engineering. Am. J. Stem Cells 3:1 (2014), 1–20.
    • (2014) Am. J. Stem Cells , vol.3 , Issue.1 , pp. 1-20
    • Moroni, F.1    Mirabella, T.2
  • 114
    • 0042121489 scopus 로고    scopus 로고
    • Efficacy of treatment with glycosaminoglycans on experimental collagen-induced arthritis in rats
    • [114] Campo, G.M., et al. Efficacy of treatment with glycosaminoglycans on experimental collagen-induced arthritis in rats. Arthritis Res. Ther. 5:3 (2003), R122–R131.
    • (2003) Arthritis Res. Ther. , vol.5 , Issue.3 , pp. R122-R131
    • Campo, G.M.1
  • 115
    • 84878337447 scopus 로고    scopus 로고
    • The effects on bone cells of metal ions released from orthopaedic implants. A review
    • [115] Sansone, V., Pagani, D., Melato, M., The effects on bone cells of metal ions released from orthopaedic implants. A review. Clin. Cases Min. Bone Metab. 10:1 (2013), 34–40.
    • (2013) Clin. Cases Min. Bone Metab. , vol.10 , Issue.1 , pp. 34-40
    • Sansone, V.1    Pagani, D.2    Melato, M.3
  • 116
    • 33750504452 scopus 로고    scopus 로고
    • Response of human endothelial cells to oxidative stress on Ti6Al4V alloy
    • [116] Tsaryk, R., et al. Response of human endothelial cells to oxidative stress on Ti6Al4V alloy. Biomaterials 28:5 (2007), 806–813.
    • (2007) Biomaterials , vol.28 , Issue.5 , pp. 806-813
    • Tsaryk, R.1
  • 117
    • 18544371009 scopus 로고    scopus 로고
    • Metals, toxicity and oxidative stress
    • [117] Valko, M., Morris, H., Cronin, M.T., Metals, toxicity and oxidative stress. Curr. Med. Chem. 12:10 (2005), 1161–1208.
    • (2005) Curr. Med. Chem. , vol.12 , Issue.10 , pp. 1161-1208
    • Valko, M.1    Morris, H.2    Cronin, M.T.3
  • 118
    • 0035750172 scopus 로고    scopus 로고
    • Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage
    • [118] Ercal, N., Gurer-Orhan, H., Aykin-Burns, N., Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr. Top. Med. Chem. 1:6 (2001), 529–539.
    • (2001) Curr. Top. Med. Chem. , vol.1 , Issue.6 , pp. 529-539
    • Ercal, N.1    Gurer-Orhan, H.2    Aykin-Burns, N.3
  • 119
    • 84896777823 scopus 로고    scopus 로고
    • In vitro/In vivo assessment and mechanisms of toxicity of bioceramic materials and its wear particulates
    • [119] Thrivikraman, G., Madras, G., Basu, B., In vitro/In vivo assessment and mechanisms of toxicity of bioceramic materials and its wear particulates. RSC Adv. 4:25 (2014), 12763–12781.
    • (2014) RSC Adv. , vol.4 , Issue.25 , pp. 12763-12781
    • Thrivikraman, G.1    Madras, G.2    Basu, B.3
  • 120
    • 67649512002 scopus 로고    scopus 로고
    • Biologic effects of implant debris
    • [120] Hallab, N.J., Jacobs, J.J., Biologic effects of implant debris. Bull. NYU Hosp. Jt. Dis. 67:2 (2009), 182–188.
    • (2009) Bull. NYU Hosp. Jt. Dis. , vol.67 , Issue.2 , pp. 182-188
    • Hallab, N.J.1    Jacobs, J.J.2
  • 121
    • 84958251074 scopus 로고    scopus 로고
    • Resveratrol protects against titanium particle-induced aseptic loosening through reduction of oxidative stress and inactivation of NF-kappaB
    • [121] Luo, G., et al. Resveratrol protects against titanium particle-induced aseptic loosening through reduction of oxidative stress and inactivation of NF-kappaB. Inflammation 39:2 (2016), 775–785.
    • (2016) Inflammation , vol.39 , Issue.2 , pp. 775-785
    • Luo, G.1
  • 122
    • 33644860134 scopus 로고    scopus 로고
    • Role of free radicals in aseptic loosening of hip arthroplasty
    • [122] Kinov, P., et al. Role of free radicals in aseptic loosening of hip arthroplasty. J. Orthop. Res. 24:1 (2006), 55–62.
    • (2006) J. Orthop. Res. , vol.24 , Issue.1 , pp. 55-62
    • Kinov, P.1
  • 123
    • 67649466103 scopus 로고    scopus 로고
    • Particle disease in metal-on-metal total hip replacements
    • C.B. Rieker M. Windler U. Wyss Huber Bern
    • [123] Doorn, P.F., Campbell, P., Amstutz, H., Particle disease in metal-on-metal total hip replacements. Rieker, C.B., Windler, M., Wyss, U., (eds.) Metasul: a Metal-on-metal Bearing, 1999, Huber, Bern, 113–119.
    • (1999) Metasul: a Metal-on-metal Bearing , pp. 113-119
    • Doorn, P.F.1    Campbell, P.2    Amstutz, H.3
  • 124
    • 84912570881 scopus 로고    scopus 로고
    • Direct in vivo inflammatory cell-induced corrosion of CoCrMo alloy orthopedic implant surfaces
    • [124] Gilbert, J.L., et al. Direct in vivo inflammatory cell-induced corrosion of CoCrMo alloy orthopedic implant surfaces. J. Biomed. Mater. Res. A 103:1 (2015), 211–223.
    • (2015) J. Biomed. Mater. Res. A , vol.103 , Issue.1 , pp. 211-223
    • Gilbert, J.L.1
  • 125
    • 85018218629 scopus 로고    scopus 로고
    • Chapter three - oxidative stress, inflammation, and the corrosion of metallic biomaterials: corrosion causes biology and biology causes corrosion A2-dziubla, thomas
    • D.A. Butterfield Academic Press
    • [125] Gilbert, J.L., Kubacki, G.W., Chapter three - oxidative stress, inflammation, and the corrosion of metallic biomaterials: corrosion causes biology and biology causes corrosion A2-dziubla, thomas. Butterfield, D.A., (eds.) Oxidative Stress and Biomaterials, 2016, Academic Press, 59–88.
    • (2016) Oxidative Stress and Biomaterials , pp. 59-88
    • Gilbert, J.L.1    Kubacki, G.W.2
  • 126
    • 0346122852 scopus 로고    scopus 로고
    • Effect of hydrogen peroxide on titanium surfaces: in situ imaging and step-polarization impedance spectroscopy of commercially pure titanium and titanium, 6-aluminum, 4-vanadium
    • [126] Bearinger, J.P., Orme, C.A., Gilbert, J.L., Effect of hydrogen peroxide on titanium surfaces: in situ imaging and step-polarization impedance spectroscopy of commercially pure titanium and titanium, 6-aluminum, 4-vanadium. J. Biomed. Mater. Res. A 67:3 (2003), 702–712.
    • (2003) J. Biomed. Mater. Res. A , vol.67 , Issue.3 , pp. 702-712
    • Bearinger, J.P.1    Orme, C.A.2    Gilbert, J.L.3
  • 127
    • 84880035228 scopus 로고    scopus 로고
    • Biological therapy of strontium-substituted bioglass for soft tissue wound-healing: responses to oxidative stress in ovariectomised rats
    • [127] Jebahi, S., et al. Biological therapy of strontium-substituted bioglass for soft tissue wound-healing: responses to oxidative stress in ovariectomised rats. Ann. Pharm. Fr. 71:4 (2013), 234–242.
    • (2013) Ann. Pharm. Fr. , vol.71 , Issue.4 , pp. 234-242
    • Jebahi, S.1
  • 128
    • 84855723708 scopus 로고    scopus 로고
    • Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering
    • [128] Wu, C., et al. Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Biomaterials 33:7 (2012), 2076–2085.
    • (2012) Biomaterials , vol.33 , Issue.7 , pp. 2076-2085
    • Wu, C.1
  • 129
    • 84906786561 scopus 로고    scopus 로고
    • Effects of Cu-doped 45S5 bioactive glass on the lipid peroxidation-associated growth of human osteoblast-like cells in vitro
    • [129] Milkovic, L., et al. Effects of Cu-doped 45S5 bioactive glass on the lipid peroxidation-associated growth of human osteoblast-like cells in vitro. J. Biomed. Mater. Res. A 102:10 (2014), 3556–3561.
    • (2014) J. Biomed. Mater. Res. A , vol.102 , Issue.10 , pp. 3556-3561
    • Milkovic, L.1
  • 130
    • 84944790495 scopus 로고    scopus 로고
    • Accelerated bone ingrowth by local delivery of Zinc from bioactive glass: oxidative stress status, mechanical property, and microarchitectural characterization in an ovariectomized rat model
    • [130] Samira, J., et al. Accelerated bone ingrowth by local delivery of Zinc from bioactive glass: oxidative stress status, mechanical property, and microarchitectural characterization in an ovariectomized rat model. Libyan J. Med., 10, 2015, 28572.
    • (2015) Libyan J. Med. , vol.10 , pp. 28572
    • Samira, J.1
  • 131
    • 77956554868 scopus 로고    scopus 로고
    • Lipid peroxidation product 4-hydroxynonenal as factor of oxidative homeostasis supporting bone regeneration with bioactive glasses
    • [131] Mrakovcic, L., et al. Lipid peroxidation product 4-hydroxynonenal as factor of oxidative homeostasis supporting bone regeneration with bioactive glasses. Acta Biochim. Pol. 57:2 (2010), 173–178.
    • (2010) Acta Biochim. Pol. , vol.57 , Issue.2 , pp. 173-178
    • Mrakovcic, L.1
  • 132
    • 34249883825 scopus 로고    scopus 로고
    • Real-time detection of stress in 3D tissue-engineered constructs using NF-kappaB activation in transiently transfected human dermal fibroblast cells
    • [132] Canton, I., et al. Real-time detection of stress in 3D tissue-engineered constructs using NF-kappaB activation in transiently transfected human dermal fibroblast cells. Tissue Eng. 13:5 (2007), 1013–1024.
    • (2007) Tissue Eng. , vol.13 , Issue.5 , pp. 1013-1024
    • Canton, I.1
  • 133
    • 72149099632 scopus 로고    scopus 로고
    • Curcumin loaded poly(ε-caprolactone) nanofibers: diabetic wound dressing with antioxidant and anti-inflammatory properties
    • [133] Merrell, J.G., et al. Curcumin loaded poly(ε-caprolactone) nanofibers: diabetic wound dressing with antioxidant and anti-inflammatory properties. Clin. Exp. Pharmacol. Physiol. 36:12 (2009), 1149–1156.
    • (2009) Clin. Exp. Pharmacol. Physiol. , vol.36 , Issue.12 , pp. 1149-1156
    • Merrell, J.G.1
  • 134
    • 84929541557 scopus 로고    scopus 로고
    • Degradation of Implant Materials
    • Springer
    • [134] Eliaz, N., Degradation of Implant Materials. 2012, Springer, 516.
    • (2012) , pp. 516
    • Eliaz, N.1
  • 135
    • 84946235595 scopus 로고    scopus 로고
    • Macrophages, foreign body giant cells and their response to implantable biomaterials
    • [135] Sheikh, Z., et al. Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials, 8(9), 2015, 5269.
    • (2015) Materials , vol.8 , Issue.9 , pp. 5269
    • Sheikh, Z.1
  • 136
    • 84937542571 scopus 로고    scopus 로고
    • Nanotoxicity: an interplay of oxidative stress, inflammation and cell death
    • [136] Khanna, P., et al. Nanotoxicity: an interplay of oxidative stress, inflammation and cell death. Nanomaterials 5:3 (2015), 1163–1180.
    • (2015) Nanomaterials , vol.5 , Issue.3 , pp. 1163-1180
    • Khanna, P.1
  • 137
    • 57649243749 scopus 로고    scopus 로고
    • Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro
    • [137] Park, E.J., Park, K., Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol. Lett. 184:1 (2009), 18–25.
    • (2009) Toxicol. Lett. , vol.184 , Issue.1 , pp. 18-25
    • Park, E.J.1    Park, K.2
  • 138
    • 84893712676 scopus 로고    scopus 로고
    • Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells
    • [138] Avalos, A., et al. Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells. J. Appl. Toxicol. 34:4 (2014), 413–423.
    • (2014) J. Appl. Toxicol. , vol.34 , Issue.4 , pp. 413-423
    • Avalos, A.1
  • 139
    • 80053199539 scopus 로고    scopus 로고
    • Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV Irradiations
    • [139] Misawa, M., Takahashi, J., Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV Irradiations. Nanomedicine 7:5 (2011), 604–614.
    • (2011) Nanomedicine , vol.7 , Issue.5 , pp. 604-614
    • Misawa, M.1    Takahashi, J.2
  • 140
    • 84899892181 scopus 로고    scopus 로고
    • Role of membrane disturbance and oxidative stress in the mode of action underlying the toxicity of differently charged polystyrene nanoparticles
    • [140] Bhattacharjee, S., et al. Role of membrane disturbance and oxidative stress in the mode of action underlying the toxicity of differently charged polystyrene nanoparticles. RSC Adv. 4:37 (2014), 19321–19330.
    • (2014) RSC Adv. , vol.4 , Issue.37 , pp. 19321-19330
    • Bhattacharjee, S.1
  • 141
    • 68549135126 scopus 로고    scopus 로고
    • Cytotoxicity of nanoparticles independent from oxidative stress
    • [141] Frohlich, E., et al. Cytotoxicity of nanoparticles independent from oxidative stress. J. Toxicol. Sci. 34:4 (2009), 363–375.
    • (2009) J. Toxicol. Sci. , vol.34 , Issue.4 , pp. 363-375
    • Frohlich, E.1
  • 142
    • 84884274380 scopus 로고    scopus 로고
    • Mechanisms of nanoparticle-induced oxidative stress and toxicity
    • [142] Manke, A., Wang, L., Rojanasakul, Y., Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res. Int., 2013, 2013, 15.
    • (2013) BioMed Res. Int. , vol.2013 , pp. 15
    • Manke, A.1    Wang, L.2    Rojanasakul, Y.3
  • 143
    • 84901621691 scopus 로고    scopus 로고
    • Mechanisms of nanotoxicity: generation of reactive oxygen species
    • [143] Fu, P.P., et al. Mechanisms of nanotoxicity: generation of reactive oxygen species. J. Food Drug Analysis 22:1 (2014), 64–75.
    • (2014) J. Food Drug Analysis , vol.22 , Issue.1 , pp. 64-75
    • Fu, P.P.1
  • 144
    • 84893780374 scopus 로고    scopus 로고
    • Nanotoxicity: oxidative stress mediated toxicity of metal and metal oxide nanoparticles
    • [144] Sarkar, A., Ghosh, M., Sil, P.C., Nanotoxicity: oxidative stress mediated toxicity of metal and metal oxide nanoparticles. J. Nanosci. Nanotechnol. 14:1 (2014), 730–743.
    • (2014) J. Nanosci. Nanotechnol. , vol.14 , Issue.1 , pp. 730-743
    • Sarkar, A.1    Ghosh, M.2    Sil, P.C.3
  • 145
    • 84884813148 scopus 로고    scopus 로고
    • Suppressing iron oxide nanoparticle toxicity by vascular targeted antioxidant polymer nanoparticles
    • [145] Cochran, D.B., et al. Suppressing iron oxide nanoparticle toxicity by vascular targeted antioxidant polymer nanoparticles. Biomaterials 34:37 (2013), 9615–9622.
    • (2013) Biomaterials , vol.34 , Issue.37 , pp. 9615-9622
    • Cochran, D.B.1
  • 146
    • 0003536299 scopus 로고    scopus 로고
    • Free Radicals in Biology and Medicine [electronic Resource]
    • fifth ed. Oxford University Press Oxford ed. Oxford scholarship online, ed. J.M.C. Gutteridge and p. Oxford University Press
    • [146] Halliwell, B., Free Radicals in Biology and Medicine [electronic Resource]. fifth ed., 2015, Oxford University Press, Oxford ed. Oxford scholarship online, ed. J.M.C. Gutteridge and p. Oxford University Press.
    • (2015)
    • Halliwell, B.1
  • 147
    • 1542303712 scopus 로고    scopus 로고
    • Oxidation-responsive polymeric vesicles
    • [147] Napoli, A., et al. Oxidation-responsive polymeric vesicles. Nat. Mater. 3:3 (2004), 183–189.
    • (2004) Nat. Mater. , vol.3 , Issue.3 , pp. 183-189
    • Napoli, A.1
  • 148
    • 84861639373 scopus 로고    scopus 로고
    • Synthesis and characterization of poly(antioxidant beta-amino esters) for controlled release of polyphenolic antioxidants
    • [148] Wattamwar, P.P., et al. Synthesis and characterization of poly(antioxidant beta-amino esters) for controlled release of polyphenolic antioxidants. Acta Biomater. 8:7 (2012), 2529–2537.
    • (2012) Acta Biomater. , vol.8 , Issue.7 , pp. 2529-2537
    • Wattamwar, P.P.1
  • 149
    • 84975769749 scopus 로고    scopus 로고
    • Reactive oxygen species (ROS) responsive polymers for biomedical applications
    • [149] Xu, Q., et al. Reactive oxygen species (ROS) responsive polymers for biomedical applications. Macromol. Biosci. 16:5 (2016), 635–646.
    • (2016) Macromol. Biosci. , vol.16 , Issue.5 , pp. 635-646
    • Xu, Q.1
  • 150
    • 84866704372 scopus 로고    scopus 로고
    • Biocompatible polymeric nanoparticles degrade and release cargo in response to biologically relevant levels of hydrogen peroxide
    • [150] de Gracia Lux, C., et al. Biocompatible polymeric nanoparticles degrade and release cargo in response to biologically relevant levels of hydrogen peroxide. J. Am. Chem. Soc. 134:38 (2012), 15758–15764.
    • (2012) J. Am. Chem. Soc. , vol.134 , Issue.38 , pp. 15758-15764
    • de Gracia Lux, C.1
  • 151
    • 84910048612 scopus 로고    scopus 로고
    • A thermoresponsive biodegradable polymer with intrinsic antioxidant properties
    • [151] Yang, J., et al. A thermoresponsive biodegradable polymer with intrinsic antioxidant properties. Biomacromolecules 15:11 (2014), 3942–3952.
    • (2014) Biomacromolecules , vol.15 , Issue.11 , pp. 3942-3952
    • Yang, J.1
  • 152
    • 0034666757 scopus 로고    scopus 로고
    • Modification of inflammatory response to implanted biomedical materials in vivo by surface bound superoxide dismutase mimics
    • [152] Udipi, K., et al. Modification of inflammatory response to implanted biomedical materials in vivo by surface bound superoxide dismutase mimics. J. Biomed. Mater. Res. 51:4 (2000), 549–560.
    • (2000) J. Biomed. Mater. Res. , vol.51 , Issue.4 , pp. 549-560
    • Udipi, K.1
  • 153
    • 84895035903 scopus 로고    scopus 로고
    • Endothelial targeting of nanocarriers loaded with antioxidant enzymes for protection against vascular oxidative stress and inflammation
    • [153] Hood, E.D., et al. Endothelial targeting of nanocarriers loaded with antioxidant enzymes for protection against vascular oxidative stress and inflammation. Biomaterials 35:11 (2014), 3708–3715.
    • (2014) Biomaterials , vol.35 , Issue.11 , pp. 3708-3715
    • Hood, E.D.1
  • 154
    • 84928398946 scopus 로고    scopus 로고
    • Activation of the Nrf2-regulated antioxidant cell response inhibits HEMA-induced oxidative stress and supports cell viability
    • [154] Gallorini, M., et al. Activation of the Nrf2-regulated antioxidant cell response inhibits HEMA-induced oxidative stress and supports cell viability. Biomaterials 56 (2015), 114–128.
    • (2015) Biomaterials , vol.56 , pp. 114-128
    • Gallorini, M.1
  • 155
    • 84880963867 scopus 로고    scopus 로고
    • Delivery of Nox2-NADPH oxidase siRNA with polyketal nanoparticles for improving cardiac function following myocardial infarction
    • [155] Somasuntharam, I., et al. Delivery of Nox2-NADPH oxidase siRNA with polyketal nanoparticles for improving cardiac function following myocardial infarction. Biomaterials 34:31 (2013), 7790–7798.
    • (2013) Biomaterials , vol.34 , Issue.31 , pp. 7790-7798
    • Somasuntharam, I.1
  • 156
    • 79957890939 scopus 로고    scopus 로고
    • Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets
    • [156] Drummond, G.R., et al. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat. Rev. Drug Discov. 10:6 (2011), 453–471.
    • (2011) Nat. Rev. Drug Discov. , vol.10 , Issue.6 , pp. 453-471
    • Drummond, G.R.1
  • 157
    • 84958581091 scopus 로고    scopus 로고
    • Oxidation-induced degradable nanogels for iron chelation
    • [157] Liu, Z., et al. Oxidation-induced degradable nanogels for iron chelation. Sci. Rep., 6, 2016, 20923.
    • (2016) Sci. Rep. , vol.6 , pp. 20923
    • Liu, Z.1
  • 158
    • 84903714354 scopus 로고    scopus 로고
    • Engineering biodegradable polyester elastomers with antioxidant properties to attenuate oxidative stress in tissues
    • [158] van Lith, R., et al. Engineering biodegradable polyester elastomers with antioxidant properties to attenuate oxidative stress in tissues. Biomaterials 35:28 (2014), 8113–8122.
    • (2014) Biomaterials , vol.35 , Issue.28 , pp. 8113-8122
    • van Lith, R.1
  • 159
    • 78650293743 scopus 로고    scopus 로고
    • Direct evidence for catalase and peroxidase activities of ferritin-platinum nanoparticles
    • [159] Fan, J., et al. Direct evidence for catalase and peroxidase activities of ferritin-platinum nanoparticles. Biomaterials 32:6 (2011), 1611–1618.
    • (2011) Biomaterials , vol.32 , Issue.6 , pp. 1611-1618
    • Fan, J.1
  • 160
    • 0030199917 scopus 로고    scopus 로고
    • Influence of titanium oxide and titanium peroxy gel on the breakdown of hyaluronan by reactive oxygen species
    • [160] Taylor, G.C., et al. Influence of titanium oxide and titanium peroxy gel on the breakdown of hyaluronan by reactive oxygen species. Biomaterials 17:13 (1996), 1313–1319.
    • (1996) Biomaterials , vol.17 , Issue.13 , pp. 1313-1319
    • Taylor, G.C.1
  • 161
    • 84938805326 scopus 로고    scopus 로고
    • Bioactive glasses in soft tissue repair
    • [161] Miguez-Pacheco, V., et al. Bioactive glasses in soft tissue repair. Am. Ceram. Soc. Bull., 94(6), 2009.
    • (2009) Am. Ceram. Soc. Bull. , vol.94 , Issue.6
    • Miguez-Pacheco, V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.