메뉴 건너뛰기




Volumn 128, Issue 4, 2016, Pages 479-487

The Rap1-RIAM-talin axis of integrin activation and blood cell function

Author keywords

[No Author keywords available]

Indexed keywords

BETA INTEGRIN; BINDING PROTEIN; GUANOSINE TRIPHOSPHATASE; GUANOSINE TRIPHOSPHATASE ACTIVATING PROTEIN; INTEGRIN; KINDLIN; PROTEIN; RAP PROTEIN; RAP1 GTP INTERACTING ADAPTER MOLECULE; RAP1 PROTEIN; TALIN; UNCLASSIFIED DRUG; APBB1IP PROTEIN, HUMAN; MEMBRANE PROTEIN; SIGNAL TRANSDUCING ADAPTOR PROTEIN; TELOMERE BINDING PROTEIN; TERF2IP PROTEIN, HUMAN;

EID: 84987596101     PISSN: 00064971     EISSN: 15280020     Source Type: Journal    
DOI: 10.1182/blood-2015-12-638700     Document Type: Review
Times cited : (105)

References (119)
  • 1
    • 84945471772 scopus 로고    scopus 로고
    • How leukocytes cross the vascular endothelium
    • Vestweber D. How leukocytes cross the vascular endothelium. Nat Rev Immunol. 2015;15(11):692-704.
    • (2015) Nat Rev Immunol. , vol.15 , Issue.11 , pp. 692-704
    • Vestweber, D.1
  • 2
    • 37249068049 scopus 로고    scopus 로고
    • Platelet activation and atherothrombosis
    • Davì G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med. 2007;357(24):2482-2494.
    • (2007) N Engl J Med. , vol.357 , Issue.24 , pp. 2482-2494
    • Davì, G.1    Patrono, C.2
  • 3
    • 0037145037 scopus 로고    scopus 로고
    • Integrins: Bidirectional, allosteric signaling machines
    • Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110(6):673-687.
    • (2002) Cell. , vol.110 , Issue.6 , pp. 673-687
    • Hynes, R.O.1
  • 5
    • 79957621253 scopus 로고    scopus 로고
    • The insider's guide to leukocyte integrin signalling and function
    • Hogg N, Patzak I, Willenbrock F. The insider's guide to leukocyte integrin signalling and function. Nat Rev Immunol. 2011;11(6):416-426.
    • (2011) Nat Rev Immunol. , vol.11 , Issue.6 , pp. 416-426
    • Hogg, N.1    Patzak, I.2    Willenbrock, F.3
  • 6
    • 34247891506 scopus 로고    scopus 로고
    • Structural basis of integrin regulation and signaling
    • Luo BH, Carman CV, Springer TA. Structural basis of integrin regulation and signaling. Annu Rev Immunol. 2007;25:619-647.
    • (2007) Annu Rev Immunol. , vol.25 , pp. 619-647
    • Luo, B.H.1    Carman, C.V.2    Springer, T.A.3
  • 7
    • 84876378206 scopus 로고    scopus 로고
    • Integrin αIIbβ3: From discovery to efficacious therapeutic target
    • Bledzka K, Smyth SS, Plow EF. Integrin αIIbβ3: from discovery to efficacious therapeutic target. Circ Res. 2013;112(8):1189-1200.
    • (2013) Circ Res. , vol.112 , Issue.8 , pp. 1189-1200
    • Bledzka, K.1    Smyth, S.S.2    Plow, E.F.3
  • 8
    • 0025214541 scopus 로고
    • Point mutations impairing cell surface expression of the common beta subunit (CD18) in a patient with leukocyte adhesion molecule (Leu-CAM) deficiency
    • Arnaout MA, Dana N, Gupta SK, Tenen DG, Fathallah DM. Point mutations impairing cell surface expression of the common beta subunit (CD18) in a patient with leukocyte adhesion molecule (Leu-CAM) deficiency. J Clin Invest. 1990;85(3):977-981.
    • (1990) J Clin Invest. , vol.85 , Issue.3 , pp. 977-981
    • Arnaout, M.A.1    Dana, N.2    Gupta, S.K.3    Tenen, D.G.4    Fathallah, D.M.5
  • 9
    • 0025284549 scopus 로고
    • Distinct mutations in two patients with leukocyte adhesion deficiency and their functional correlates
    • Wardlaw AJ, Hibbs ML, Stacker SA, Springer TA. Distinct mutations in two patients with leukocyte adhesion deficiency and their functional correlates. J Exp Med. 1990;172(1):335-345.
    • (1990) J Exp Med. , vol.172 , Issue.1 , pp. 335-345
    • Wardlaw, A.J.1    Hibbs, M.L.2    Stacker, S.A.3    Springer, T.A.4
  • 10
    • 84928161936 scopus 로고    scopus 로고
    • αIIbβ3 variants defined by next-generation sequencing: Predicting variants likely to cause Glanzmann thrombasthenia
    • Buitrago L, Rendon A, Liang Y, et al; ThromboGenomics Consortium. αIIbβ3 variants defined by next-generation sequencing: predicting variants likely to cause Glanzmann thrombasthenia. Proc Natl Acad Sci USA. 2015;112(15):E1898-E1907.
    • (2015) Proc Natl Acad Sci USA , vol.112 , Issue.15 , pp. E1898-E1907
    • Buitrago, L.1    Rendon, A.2    Liang, Y.3
  • 11
    • 84857688656 scopus 로고    scopus 로고
    • Integrin inside-out signaling and the immunological synapse
    • Springer TA, Dustin ML. Integrin inside-out signaling and the immunological synapse. Curr Opin Cell Biol. 2012;24(1):107-115.
    • (2012) Curr Opin Cell Biol. , vol.24 , Issue.1 , pp. 107-115
    • Springer, T.A.1    Dustin, M.L.2
  • 12
    • 0037031906 scopus 로고    scopus 로고
    • Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling
    • Takagi J, Petre BM, Walz T, Springer TA. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell. 2002;110(5):599-11.
    • (2002) Cell. , vol.110 , Issue.5 , pp. 599-611
    • Takagi, J.1    Petre, B.M.2    Walz, T.3    Springer, T.A.4
  • 13
    • 0035850669 scopus 로고    scopus 로고
    • Crystal structure of the extracellular segment of integrin alpha Vbeta3
    • Xiong JP, Stehle T, Diefenbach B, et al. Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science. 2001;294(5541):339-345.
    • (2001) Science , vol.294 , Issue.5541 , pp. 339-345
    • Xiong, J.P.1    Stehle, T.2    Diefenbach, B.3
  • 14
    • 77949862490 scopus 로고    scopus 로고
    • The final steps of integrin activation: The end game
    • Shattil SJ, Kim C, Ginsberg MH. The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol. 2010;11(4):288-300.
    • (2010) Nat Rev Mol Cell Biol. , vol.11 , Issue.4 , pp. 288-300
    • Shattil, S.J.1    Kim, C.2    Ginsberg, M.H.3
  • 16
    • 75749154495 scopus 로고    scopus 로고
    • Recreation of the terminal events in physiological integrin activation
    • Ye F, Hu G, Taylor D, et al. Recreation of the terminal events in physiological integrin activation. J Cell Biol. 2010;188(1):157-173.
    • (2010) J Cell Biol. , vol.188 , Issue.1 , pp. 157-173
    • Ye, F.1    Hu, G.2    Taylor, D.3
  • 17
    • 84896385567 scopus 로고    scopus 로고
    • SnapShot: Talin and the modular nature of the integrin adhesome
    • Ye F, Lagarrigue F, Ginsberg MH. SnapShot: Talin and the modular nature of the integrin adhesome. Cell. 2014;156(6):1340-1341.
    • (2014) Cell. , vol.156 , Issue.6 , pp. 1340-1341
    • Ye, F.1    Lagarrigue, F.2    Ginsberg, M.H.3
  • 18
    • 37549029679 scopus 로고    scopus 로고
    • Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo
    • Nieswandt B, Moser M, Pleines I, et al. Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. J Exp Med. 2007;204(13):3113-3118.
    • (2007) J Exp Med. , vol.204 , Issue.13 , pp. 3113-3118
    • Nieswandt, B.1    Moser, M.2    Pleines, I.3
  • 19
    • 37549064277 scopus 로고    scopus 로고
    • Talin is required for integrin-mediated platelet function in hemostasis and thrombosis
    • Petrich BG, Marchese P, Ruggeri ZM, et al. Talin is required for integrin-mediated platelet function in hemostasis and thrombosis. J Exp Med. 2007;204(13):3103-3111.
    • (2007) J Exp Med. , vol.204 , Issue.13 , pp. 3103-3111
    • Petrich, B.G.1    Marchese, P.2    Ruggeri, Z.M.3
  • 20
    • 84860830766 scopus 로고    scopus 로고
    • Distinct roles for talin-1 and kindlin-3 in LFA-1 extension and affinity regulation
    • Lefort CT, Rossaint J, Moser M, et al. Distinct roles for talin-1 and kindlin-3 in LFA-1 extension and affinity regulation. Blood. 2012;119(18):4275-4282.
    • (2012) Blood , vol.119 , Issue.18 , pp. 4275-4282
    • Lefort, C.T.1    Rossaint, J.2    Moser, M.3
  • 21
    • 0033213922 scopus 로고    scopus 로고
    • The Talin head domain binds to integrin beta subunit cytoplasmic tails and regulates integrin activation
    • Calderwood DA, Zent R, Grant R, Rees DJ, Hynes RO, Ginsberg MH. The Talin head domain binds to integrin beta subunit cytoplasmic tails and regulates integrin activation. J Biol Chem. 1999;274(40):28071-28074.
    • (1999) J Biol Chem. , vol.274 , Issue.40 , pp. 28071-28074
    • Calderwood, D.A.1    Zent, R.2    Grant, R.3    Rees, D.J.4    Hynes, R.O.5    Ginsberg, M.H.6
  • 22
    • 0141865705 scopus 로고    scopus 로고
    • Talin binding to integrin beta tails: A final common step in integrin activation
    • Tadokoro S, Shattil SJ, Eto K, et al. Talin binding to integrin beta tails: a final common step in integrin activation. Science. 2003;302(5642):103-106.
    • (2003) Science , vol.302 , Issue.5642 , pp. 103-106
    • Tadokoro, S.1    Shattil, S.J.2    Eto, K.3
  • 23
    • 70450222316 scopus 로고    scopus 로고
    • The structure of an integrin/talin complex reveals the basis of inside-out signal transduction
    • Anthis NJ, Wegener KL, Ye F, et al. The structure of an integrin/talin complex reveals the basis of inside-out signal transduction. EMBO J. 2009;28(22):3623-3632.
    • (2009) EMBO J , vol.28 , Issue.22 , pp. 3623-3632
    • Anthis, N.J.1    Wegener, K.L.2    Ye, F.3
  • 24
    • 0037238844 scopus 로고    scopus 로고
    • Structural determinants of integrin recognition by talin
    • García-Alvarez B, de Pereda JM, Calderwood DA, et al. Structural determinants of integrin recognition by talin. Mol Cell. 2003;11(1):49-58.
    • (2003) Mol Cell. , vol.11 , Issue.1 , pp. 49-58
    • García-Alvarez, B.1    De Pereda, J.M.2    Calderwood, D.A.3
  • 25
    • 33845987101 scopus 로고    scopus 로고
    • Structural basis of integrin activation by talin
    • Wegener KL, Partridge AW, Han J, et al. Structural basis of integrin activation by talin. Cell. 2007;128(1):171-182.
    • (2007) Cell. , vol.128 , Issue.1 , pp. 171-182
    • Wegener, K.L.1    Partridge, A.W.2    Han, J.3
  • 26
    • 34547654194 scopus 로고    scopus 로고
    • The antithrombotic potential of selective blockade of talin-dependent integrin alpha IIb beta 3 (platelet GPIIb-IIIa) activation
    • Petrich BG, Fogelstrand P, Partridge AW, et al. The antithrombotic potential of selective blockade of talin-dependent integrin alpha IIb beta 3 (platelet GPIIb-IIIa) activation. J Clin Invest. 2007;117(8):2250-2259.
    • (2007) J Clin Invest. , vol.117 , Issue.8 , pp. 2250-2259
    • Petrich, B.G.1    Fogelstrand, P.2    Partridge, A.W.3
  • 27
    • 79551647521 scopus 로고    scopus 로고
    • Talin-dependent integrin activation is required for fibrin clot retraction by platelets
    • Haling JR, Monkley SJ, Critchley DR, Petrich BG. Talin-dependent integrin activation is required for fibrin clot retraction by platelets. Blood. 2011;117(5):1719-1722.
    • (2011) Blood , vol.117 , Issue.5 , pp. 1719-1722
    • Haling, J.R.1    Monkley, S.J.2    Critchley, D.R.3    Petrich, B.G.4
  • 28
    • 84899658422 scopus 로고    scopus 로고
    • A talin mutant that impairs talin-integrin binding in platelets decelerates αIIbβ3 activation without pathological bleeding
    • Stefanini L, Ye F, Snider AK, et al. A talin mutant that impairs talin-integrin binding in platelets decelerates αIIbβ3 activation without pathological bleeding. Blood. 2014;123(17):2722-2731.
    • (2014) Blood , vol.123 , Issue.17 , pp. 2722-2731
    • Stefanini, L.1    Ye, F.2    Snider, A.K.3
  • 29
    • 84945462570 scopus 로고    scopus 로고
    • Blocking neutrophil integrin activation prevents ischemia-reperfusion injury
    • Yago T, Petrich BG, Zhang N, et al. Blocking neutrophil integrin activation prevents ischemia-reperfusion injury. J Exp Med. 2015;212(8):1267-1281.
    • (2015) J Exp Med. , vol.212 , Issue.8 , pp. 1267-1281
    • Yago, T.1    Petrich, B.G.2    Zhang, N.3
  • 30
    • 46249121793 scopus 로고    scopus 로고
    • Mechanisms and consequences of agonist-induced talin recruitment to platelet integrin alphaIIbbeta3
    • Watanabe N, Bodin L, Pandey M, et al. Mechanisms and consequences of agonist-induced talin recruitment to platelet integrin alphaIIbbeta3. J Cell Biol. 2008;181(7):1211-1222.
    • (2008) J Cell Biol. , vol.181 , Issue.7 , pp. 1211-1222
    • Watanabe, N.1    Bodin, L.2    Pandey, M.3
  • 31
    • 76249120625 scopus 로고    scopus 로고
    • Consensus motif for integrin transmembrane helix association
    • Berger BW, Kulp DW, Span LM, et al. Consensus motif for integrin transmembrane helix association. Proc Natl Acad Sci USA. 2010;107(2):703-708.
    • (2010) Proc Natl Acad Sci USA , vol.107 , Issue.2 , pp. 703-708
    • Berger, B.W.1    Kulp, D.W.2    Span, L.M.3
  • 32
    • 0029966310 scopus 로고    scopus 로고
    • Breaking the integrin hinge. A defined structural constraint regulates integrin signaling
    • Hughes PE, Diaz-Gonzalez F, Leong L, et al. Breaking the integrin hinge. A defined structural constraint regulates integrin signaling. J Biol Chem. 1996;271(12):6571-6574.
    • (1996) J Biol Chem. , vol.271 , Issue.12 , pp. 6571-6574
    • Hughes, P.E.1    Diaz-Gonzalez, F.2    Leong, L.3
  • 33
    • 16644396938 scopus 로고    scopus 로고
    • A specific interface between integrin transmembrane helices and affinity for ligand
    • Luo BH, Springer TA, Takagi J. A specific interface between integrin transmembrane helices and affinity for ligand. PLoS Biol. 2004;2(6):e153.
    • (2004) PLoS Biol. , vol.2 , Issue.6 , pp. e153
    • Luo, B.H.1    Springer, T.A.2    Takagi, J.3
  • 34
    • 14844323604 scopus 로고    scopus 로고
    • Transmembrane domain helix packing stabilizes integrin alphaIIbbeta3 in the low affinity state
    • Partridge AW, Liu S, Kim S, Bowie JU, Ginsberg MH. Transmembrane domain helix packing stabilizes integrin alphaIIbbeta3 in the low affinity state. J Biol Chem. 2005;280(8):7294-7300.
    • (2005) J Biol Chem. , vol.280 , Issue.8 , pp. 7294-7300
    • Partridge, A.W.1    Liu, S.2    Kim, S.3    Bowie, J.U.4    Ginsberg, M.H.5
  • 35
    • 0042681786 scopus 로고    scopus 로고
    • Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins
    • Kim M, Carman CV, Springer TA. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science. 2003;301(5640):1720-1725.
    • (2003) Science , vol.301 , Issue.5640 , pp. 1720-1725
    • Kim, M.1    Carman, C.V.2    Springer, T.A.3
  • 36
    • 41449108071 scopus 로고    scopus 로고
    • Structure of the integrin beta3 transmembrane segment in phospholipid bicelles and detergent micelles
    • Lau TL, Partridge AW, Ginsberg MH, Ulmer TS. Structure of the integrin beta3 transmembrane segment in phospholipid bicelles and detergent micelles. Biochemistry. 2008;47(13):4008-4016.
    • (2008) Biochemistry , vol.47 , Issue.13 , pp. 4008-4016
    • Lau, T.L.1    Partridge, A.W.2    Ginsberg, M.H.3    Ulmer, T.S.4
  • 37
    • 65649127175 scopus 로고    scopus 로고
    • The structure of the integrin alphaIIbbeta3 transmembrane complex explains integrin transmembrane signalling
    • Lau TL, Kim C, Ginsberg MH, Ulmer TS. The structure of the integrin alphaIIbbeta3 transmembrane complex explains integrin transmembrane signalling. EMBO J. 2009;28(9):1351-1361.
    • (2009) EMBO J , vol.28 , Issue.9 , pp. 1351-1361
    • Lau, T.L.1    Kim, C.2    Ginsberg, M.H.3    Ulmer, T.S.4
  • 38
    • 0038694994 scopus 로고    scopus 로고
    • Snorkeling of lysine side chains in transmembrane helices: How easy can it get?
    • Strandberg E, Killian JA. Snorkeling of lysine side chains in transmembrane helices: how easy can it get? FEBS Lett. 2003;544(1-3):69-73.
    • (2003) FEBS Lett. , vol.544 , Issue.1-3 , pp. 69-73
    • Strandberg, E.1    Killian, J.A.2
  • 39
    • 84855757315 scopus 로고    scopus 로고
    • Basic amino-acid side chains regulate transmembrane integrin signalling
    • Kim C, Schmidt T, Cho EG, Ye F, Ulmer TS, Ginsberg MH. Basic amino-acid side chains regulate transmembrane integrin signalling. Nature. 2011;481(7380):209-213.
    • (2011) Nature , vol.481 , Issue.7380 , pp. 209-213
    • Kim, C.1    Schmidt, T.2    Cho, E.G.3    Ye, F.4    Ulmer, T.S.5    Ginsberg, M.H.6
  • 40
    • 0037077282 scopus 로고    scopus 로고
    • The phosphotyrosine binding-like domain of talin activates integrins
    • Calderwood DA, Yan B, de Pereda JM, et al. The phosphotyrosine binding-like domain of talin activates integrins. J Biol Chem. 2002;277(24):21749-21758.
    • (2002) J Biol Chem. , vol.277 , Issue.24 , pp. 21749-21758
    • Calderwood, D.A.1    Yan, B.2    De Pereda, J.M.3
  • 41
    • 79961038713 scopus 로고    scopus 로고
    • Multiscale simulations suggest a mechanism for integrin inside-out activation
    • Kalli AC, Campbell ID, Sansom MS. Multiscale simulations suggest a mechanism for integrin inside-out activation. Proc Natl Acad Sci USA. 2011;108(29):11890-11895.
    • (2011) Proc Natl Acad Sci USA , vol.108 , Issue.29 , pp. 11890-11895
    • Kalli, A.C.1    Campbell, I.D.2    Sansom, M.S.3
  • 42
    • 84862598504 scopus 로고    scopus 로고
    • Talin activates integrins by altering the topology of the β transmembrane domain
    • Kim C, Ye F, Hu X, Ginsberg MH. Talin activates integrins by altering the topology of the β transmembrane domain. J Cell Biol. 2012;197(5):605-611.
    • (2012) J Cell Biol. , vol.197 , Issue.5 , pp. 605-611
    • Kim, C.1    Ye, F.2    Hu, X.3    Ginsberg, M.H.4
  • 43
    • 74849118341 scopus 로고    scopus 로고
    • Lipid rafts as a membrane-organizing principle
    • Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle. Science. 2010;327(5961):46-50.
    • (2010) Science , vol.327 , Issue.5961 , pp. 46-50
    • Lingwood, D.1    Simons, K.2
  • 44
    • 0036500126 scopus 로고    scopus 로고
    • The involvement of lipid rafts in the regulation of integrin function
    • Leitinger B, Hogg N. The involvement of lipid rafts in the regulation of integrin function. J Cell Sci. 2002;115(Pt 5):963-972.
    • (2002) J Cell Sci. , vol.115 , pp. 963-972
    • Leitinger, B.1    Hogg, N.2
  • 45
    • 1942425583 scopus 로고    scopus 로고
    • Lipid rafts and integrin activation regulate oligodendrocyte survival
    • Decker L, ffrench-Constant C. Lipid rafts and integrin activation regulate oligodendrocyte survival. J Neurosci. 2004;24(15):3816-3825.
    • (2004) J Neurosci , vol.24 , Issue.15 , pp. 3816-3825
    • Decker, L.1    Ffrench-Constant, C.2
  • 46
    • 0035069134 scopus 로고    scopus 로고
    • Molecular basis of mechanotransduction in living cells
    • Hamill OP, Martinac B. Molecular basis of mechanotransduction in living cells. Physiol Rev. 2001;81(2):685-740.
    • (2001) Physiol Rev. , vol.81 , Issue.2 , pp. 685-740
    • Hamill, O.P.1    Martinac, B.2
  • 47
    • 84901828074 scopus 로고    scopus 로고
    • Feeling the hidden mechanical forces in lipid bilayer is an original sense
    • Anishkin A, Loukin SH, Teng J, Kung C. Feeling the hidden mechanical forces in lipid bilayer is an original sense. Proc Natl Acad Sci USA. 2014;111(22):7898-7905.
    • (2014) Proc Natl Acad Sci USA , vol.111 , Issue.22 , pp. 7898-7905
    • Anishkin, A.1    Loukin, S.H.2    Teng, J.3    Kung, C.4
  • 48
    • 84884574328 scopus 로고    scopus 로고
    • The purified mechanosensitive channel TREK-1 is directly sensitive to membrane tension
    • Berrier C, Pozza A, de Lacroix de Lavalette A, et al. The purified mechanosensitive channel TREK-1 is directly sensitive to membrane tension. J Biol Chem. 2013;288(38):27307-27314.
    • (2013) J Biol Chem. , vol.288 , Issue.38 , pp. 27307-27314
    • Berrier, C.1    Pozza, A.2    De Lacroix De Lavalette, A.3
  • 49
    • 84895806869 scopus 로고    scopus 로고
    • Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels
    • Brohawn SG, Su Z, MacKinnon R. Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels. Proc Natl Acad Sci USA. 2014;111(9):3614-3619.
    • (2014) Proc Natl Acad Sci USA , vol.111 , Issue.9 , pp. 3614-3619
    • Brohawn, S.G.1    Su, Z.2    MacKinnon, R.3
  • 50
    • 84857529575 scopus 로고    scopus 로고
    • Transmembrane helix-helix interactions are modulated by the sequence context and by lipid bilayer properties
    • Cymer F, Veerappan A, Schneider D. Transmembrane helix-helix interactions are modulated by the sequence context and by lipid bilayer properties. Biochim Biophys Acta. 2012;1818(4):963-973.
    • (2012) Biochim Biophys Acta , vol.1818 , Issue.4 , pp. 963-973
    • Cymer, F.1    Veerappan, A.2    Schneider, D.3
  • 51
    • 84861901984 scopus 로고    scopus 로고
    • Differential effects of lipids and lyso-lipids on the mechanosensitivity of the mechanosensitive channels MscL and MscS
    • Nomura T, Cranfield CG, Deplazes E, et al. Differential effects of lipids and lyso-lipids on the mechanosensitivity of the mechanosensitive channels MscL and MscS. Proc Natl Acad Sci USA. 2012;109(22):8770-8775.
    • (2012) Proc Natl Acad Sci USA , vol.109 , Issue.22 , pp. 8770-8775
    • Nomura, T.1    Cranfield, C.G.2    Deplazes, E.3
  • 52
    • 66249083118 scopus 로고    scopus 로고
    • Emerging roles for lipids in shaping membrane-protein function
    • Phillips R, Ursell T, Wiggins P, Sens P. Emerging roles for lipids in shaping membrane-protein function. Nature. 2009;459(7245):379-385.
    • (2009) Nature , vol.459 , Issue.7245 , pp. 379-385
    • Phillips, R.1    Ursell, T.2    Wiggins, P.3    Sens, P.4
  • 53
    • 20444465227 scopus 로고    scopus 로고
    • Integrin activation and matrix binding mediate cellular responses to mechanical stretch
    • Katsumi A, Naoe T, Matsushita T, Kaibuchi K, Schwartz MA. Integrin activation and matrix binding mediate cellular responses to mechanical stretch. J Biol Chem. 2005;280(17):16546-16549.
    • (2005) J Biol Chem. , vol.280 , Issue.17 , pp. 16546-16549
    • Katsumi, A.1    Naoe, T.2    Matsushita, T.3    Kaibuchi, K.4    Schwartz, M.A.5
  • 54
    • 0038644597 scopus 로고    scopus 로고
    • Activation of integrin alphaIIbbeta3 by modulation of transmembrane helix associations
    • Li R, Mitra N, Gratkowski H, et al. Activation of integrin alphaIIbbeta3 by modulation of transmembrane helix associations. Science. 2003;300(5620):795-798.
    • (2003) Science , vol.300 , Issue.5620 , pp. 795-798
    • Li, R.1    Mitra, N.2    Gratkowski, H.3
  • 55
    • 33845995843 scopus 로고    scopus 로고
    • Activation of platelet alphaIIbbeta3 by an exogenous peptide corresponding to the transmembrane domain of alphaIIb
    • Yin H, Litvinov RI, Vilaire G, et al. Activation of platelet alphaIIbbeta3 by an exogenous peptide corresponding to the transmembrane domain of alphaIIb. J Biol Chem. 2006;281(48):36732-36741.
    • (2006) J Biol Chem. , vol.281 , Issue.48 , pp. 36732-36741
    • Yin, H.1    Litvinov, R.I.2    Vilaire, G.3
  • 56
    • 84903546677 scopus 로고    scopus 로고
    • Intermolecular transmembrane domain interactions activate integrin αIIbβ3
    • Ye F, Kim SJ, Kim C. Intermolecular transmembrane domain interactions activate integrin αIIbβ3. J Biol Chem. 2014;289(26):18507-18513.
    • (2014) J Biol Chem. , vol.289 , Issue.26 , pp. 18507-18513
    • Ye, F.1    Kim, S.J.2    Kim, C.3
  • 57
    • 0141756175 scopus 로고    scopus 로고
    • Integrin avidity regulation: Are changes in affinity and conformation underemphasized?
    • Carman CV, Springer TA. Integrin avidity regulation: are changes in affinity and conformation underemphasized? Curr Opin Cell Biol. 2003;15(5):547-556.
    • (2003) Curr Opin Cell Biol. , vol.15 , Issue.5 , pp. 547-556
    • Carman, C.V.1    Springer, T.A.2
  • 59
    • 69549114537 scopus 로고    scopus 로고
    • Kindling the flame of integrin activation and function with kindlins
    • Plow EF, Qin J, Byzova T. Kindling the flame of integrin activation and function with kindlins. Curr Opin Hematol. 2009;16(5):323-328.
    • (2009) Curr Opin Hematol. , vol.16 , Issue.5 , pp. 323-328
    • Plow, E.F.1    Qin, J.2    Byzova, T.3
  • 60
    • 58149154658 scopus 로고    scopus 로고
    • Loss of Kindlin-1 causes skin atrophy and lethal neonatal intestinal epithelial dysfunction
    • Ussar S, Moser M, Widmaier M, et al. Loss of Kindlin-1 causes skin atrophy and lethal neonatal intestinal epithelial dysfunction. PLoS Genet. 2008;4(12):e1000289.
    • (2008) PLoS Genet. , vol.4 , Issue.12 , pp. e1000289
    • Ussar, S.1    Moser, M.2    Widmaier, M.3
  • 61
    • 40449133970 scopus 로고    scopus 로고
    • Kindlin-3 is essential for integrin activation and platelet aggregation
    • Moser M, Nieswandt B, Ussar S, Pozgajova M, Fässler R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat Med. 2008;14(3):325-330.
    • (2008) Nat Med. , vol.14 , Issue.3 , pp. 325-330
    • Moser, M.1    Nieswandt, B.2    Ussar, S.3    Pozgajova, M.4    Fässler, R.5
  • 62
    • 66549121768 scopus 로고    scopus 로고
    • LAD-1/variant syndrome is caused by mutations in FERMT3
    • Kuijpers TW, van de Vijver E, Weterman MA, et al. LAD-1/variant syndrome is caused by mutations in FERMT3. Blood. 2009;113(19):4740-4746.
    • (2009) Blood , vol.113 , Issue.19 , pp. 4740-4746
    • Kuijpers, T.W.1    Van De Vijver, E.2    Weterman, M.A.3
  • 63
    • 61949240364 scopus 로고    scopus 로고
    • A point mutation in KINDLIN3 ablates activation of three integrin subfamilies in humans
    • Malinin NL, Zhang L, Choi J, et al. A point mutation in KINDLIN3 ablates activation of three integrin subfamilies in humans. Nat Med. 2009;15(3):313-318.
    • (2009) Nat Med. , vol.15 , Issue.3 , pp. 313-318
    • Malinin, N.L.1    Zhang, L.2    Choi, J.3
  • 64
    • 61949086409 scopus 로고    scopus 로고
    • Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation
    • Svensson L, Howarth K, McDowall A, et al. Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation. Nat Med. 2009;15(3):306-312.
    • (2009) Nat Med. , vol.15 , Issue.3 , pp. 306-312
    • Svensson, L.1    Howarth, K.2    McDowall, A.3
  • 65
    • 84889092604 scopus 로고    scopus 로고
    • The mechanism of kindlin-mediated activation of integrin αIIbβ3
    • Ye F, Petrich BG, Anekal P, et al. The mechanism of kindlin-mediated activation of integrin αIIbβ3. Curr Biol. 2013;23(22):2288-2295.
    • (2013) Curr Biol. , vol.23 , Issue.22 , pp. 2288-2295
    • Ye, F.1    Petrich, B.G.2    Anekal, P.3
  • 66
    • 84897665004 scopus 로고    scopus 로고
    • Talin and kindlin: The one-two punch in integrin activation
    • Ye F, Snider AK, Ginsberg MH. Talin and kindlin: the one-two punch in integrin activation. Front Med. 2014;8(1):6-16.
    • (2014) Front Med. , vol.8 , Issue.1 , pp. 6-16
    • Ye, F.1    Snider, A.K.2    Ginsberg, M.H.3
  • 67
    • 52649163308 scopus 로고    scopus 로고
    • CalDAG-GEFI and protein kinase C represent alternative pathways leading to activation of integrin alphaIIbbeta3 in platelets
    • Cifuni SM, Wagner DD, Bergmeier W. CalDAG-GEFI and protein kinase C represent alternative pathways leading to activation of integrin alphaIIbbeta3 in platelets. Blood. 2008;112(5):1696-1703.
    • (2008) Blood , vol.112 , Issue.5 , pp. 1696-1703
    • Cifuni, S.M.1    Wagner, D.D.2    Bergmeier, W.3
  • 68
    • 0030670137 scopus 로고    scopus 로고
    • Ras-like GTPases
    • Bos JL. Ras-like GTPases. Biochim Biophys Acta. 1997;1333(2):M19-M31.
    • (1997) Biochim Biophys Acta , vol.1333 , Issue.2 , pp. M19-M31
    • Bos, J.L.1
  • 70
    • 67649198206 scopus 로고    scopus 로고
    • Phospholipase D1 regulates lymphocyte adhesion via upregulation of Rap1 at the plasma membrane
    • Mor A, Wynne JP, Ahearn IM, Dustin ML, Du G, Philips MR. Phospholipase D1 regulates lymphocyte adhesion via upregulation of Rap1 at the plasma membrane. Mol Cell Biol. 2009;29(12):3297-3306.
    • (2009) Mol Cell Biol. , vol.29 , Issue.12 , pp. 3297-3306
    • Mor, A.1    Wynne, J.P.2    Ahearn, I.M.3    Dustin, M.L.4    Du, G.5    Philips, M.R.6
  • 72
    • 27644475483 scopus 로고    scopus 로고
    • Multiple roles of Rap1 in hematopoietic cells: Complementary versus antagonistic functions
    • Stork PJ, Dillon TJ. Multiple roles of Rap1 in hematopoietic cells: complementary versus antagonistic functions. Blood. 2005;106(9):2952-2961.
    • (2005) Blood , vol.106 , Issue.9 , pp. 2952-2961
    • Stork, P.J.1    Dillon, T.J.2
  • 73
    • 34447312705 scopus 로고    scopus 로고
    • Signaling by small GTPases in the immune system
    • Scheele JS, Marks RE, Boss GR. Signaling by small GTPases in the immune system. Immunol Rev. 2007;218:92-101.
    • (2007) Immunol Rev. , vol.218 , pp. 92-101
    • Scheele, J.S.1    Marks, R.E.2    Boss, G.R.3
  • 75
    • 0036009116 scopus 로고    scopus 로고
    • Rap1A positively regulates T cells via integrin activation rather than inhibiting lymphocyte signaling
    • Sebzda E, Bracke M, Tugal T, Hogg N, Cantrell DA. Rap1A positively regulates T cells via integrin activation rather than inhibiting lymphocyte signaling. Nat Immunol. 2002;3(3):251-258.
    • (2002) Nat Immunol. , vol.3 , Issue.3 , pp. 251-258
    • Sebzda, E.1    Bracke, M.2    Tugal, T.3    Hogg, N.4    Cantrell, D.A.5
  • 76
    • 51549097602 scopus 로고    scopus 로고
    • Rap1b regulates B cell development, homing, and T cell-dependent humoral immunity
    • Chu H, Awasthi A, White GC II, Chrzanowska-Wodnicka M, Malarkannan S. Rap1b regulates B cell development, homing, and T cell-dependent humoral immunity. J Immunol. 2008;181(5):3373-3383.
    • (2008) J Immunol. , vol.181 , Issue.5 , pp. 3373-3383
    • Chu, H.1    Awasthi, A.2    White, G.Ci.3    Chrzanowska-Wodnicka, M.4    Malarkannan, S.5
  • 79
    • 0042490495 scopus 로고    scopus 로고
    • RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1
    • Katagiri K, Maeda A, Shimonaka M, Kinashi T. RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nat Immunol. 2003;4(8):741-748.
    • (2003) Nat Immunol. , vol.4 , Issue.8 , pp. 741-748
    • Katagiri, K.1    Maeda, A.2    Shimonaka, M.3    Kinashi, T.4
  • 80
    • 5044241734 scopus 로고    scopus 로고
    • RIAM, an Ena/VASP and Profilin ligand, interacts with Rap1-GTP and mediates Rap1-induced adhesion
    • Lafuente EM, van Puijenbroek AA, Krause M, et al. RIAM, an Ena/VASP and Profilin ligand, interacts with Rap1-GTP and mediates Rap1-induced adhesion. Dev Cell. 2004;7(4):585-595.
    • (2004) Dev Cell. , vol.7 , Issue.4 , pp. 585-595
    • Lafuente, E.M.1    Van Puijenbroek, A.A.2    Krause, M.3
  • 81
  • 82
    • 0028881018 scopus 로고
    • Identification of Rap1 as a target for the Crk SH3 domain-binding guanine nucleotide-releasing factor C3G
    • Gotoh T, Hattori S, Nakamura S, et al. Identification of Rap1 as a target for the Crk SH3 domain-binding guanine nucleotide-releasing factor C3G. Mol Cell Biol. 1995;15(12):6746-6753.
    • (1995) Mol Cell Biol. , vol.15 , Issue.12 , pp. 6746-6753
    • Gotoh, T.1    Hattori, S.2    Nakamura, S.3
  • 83
    • 84862291177 scopus 로고    scopus 로고
    • C3G transgenic mouse models with specific expression in platelets reveal a new role for C3G in platelet clotting through its GEF activity
    • Gutiérrez-Herrero S, Maia V, Gutiérrez-Berzal J, et al. C3G transgenic mouse models with specific expression in platelets reveal a new role for C3G in platelet clotting through its GEF activity. Biochim Biophys Acta. 2012;1823(8):1366-1377.
    • (2012) Biochim Biophys Acta , vol.1823 , Issue.8 , pp. 1366-1377
    • Gutiérrez-Herrero, S.1    Maia, V.2    Gutiérrez-Berzal, J.3
  • 84
    • 0030771490 scopus 로고    scopus 로고
    • Enhancement of guanine-nucleotide exchange activity of C3G for Rap1 by the expression of Crk, CrkL, and Grb2
    • Ichiba T, Kuraishi Y, Sakai O, et al. Enhancement of guanine-nucleotide exchange activity of C3G for Rap1 by the expression of Crk, CrkL, and Grb2. J Biol Chem. 1997;272(35):22215-22220.
    • (1997) J Biol Chem. , vol.272 , Issue.35 , pp. 22215-22220
    • Ichiba, T.1    Kuraishi, Y.2    Sakai, O.3
  • 85
    • 0033152359 scopus 로고    scopus 로고
    • CrkL activates integrin-mediated hematopoietic cell adhesion through the guanine nucleotide exchange factor C3G
    • Arai A, Nosaka Y, Kohsaka H, Miyasaka N, Miura O. CrkL activates integrin-mediated hematopoietic cell adhesion through the guanine nucleotide exchange factor C3G. Blood. 1999;93(11):3713-3722.
    • (1999) Blood , vol.93 , Issue.11 , pp. 3713-3722
    • Arai, A.1    Nosaka, Y.2    Kohsaka, H.3    Miyasaka, N.4    Miura, O.5
  • 86
    • 0035971241 scopus 로고    scopus 로고
    • Rap1 is activated by erythropoietin or interleukin-3 and is involved in regulation of beta1 integrin-mediated hematopoietic cell adhesion
    • Arai A, Nosaka Y, Kanda E, Yamamoto K, Miyasaka N, Miura O. Rap1 is activated by erythropoietin or interleukin-3 and is involved in regulation of beta1 integrin-mediated hematopoietic cell adhesion. J Biol Chem. 2001;276(13):10453-10462.
    • (2001) J Biol Chem. , vol.276 , Issue.13 , pp. 10453-10462
    • Arai, A.1    Nosaka, Y.2    Kanda, E.3    Yamamoto, K.4    Miyasaka, N.5    Miura, O.6
  • 87
    • 52249086931 scopus 로고    scopus 로고
    • The WAVE2 complex regulates T cell receptor signaling to integrins via Abl- and CrkL-C3G-mediated activation of Rap1
    • Nolz JC, Nacusi LP, Segovis CM, et al. The WAVE2 complex regulates T cell receptor signaling to integrins via Abl- and CrkL-C3G-mediated activation of Rap1. J Cell Biol. 2008;182(6):1231-1244.
    • (2008) J Cell Biol. , vol.182 , Issue.6 , pp. 1231-1244
    • Nolz, J.C.1    Nacusi, L.P.2    Segovis, C.M.3
  • 88
    • 0029928127 scopus 로고    scopus 로고
    • Sos, Vav, and C3G participate in B cell receptor-induced signaling pathways and differentially associate with Shc-Grb2, Crk, and Crk-L adaptors
    • Smit L, van der Horst G, Borst J. Sos, Vav, and C3G participate in B cell receptor-induced signaling pathways and differentially associate with Shc-Grb2, Crk, and Crk-L adaptors. J Biol Chem. 1996;271(15):8564-8569.
    • (1996) J Biol Chem. , vol.271 , Issue.15 , pp. 8564-8569
    • Smit, L.1    Van Der Horst, G.2    Borst, J.3
  • 89
    • 0036364408 scopus 로고    scopus 로고
    • A growing family of guanine nucleotide exchange factors is responsible for activation of Ras-family GTPases
    • Quilliam LA, Rebhun JF, Castro AF. A growing family of guanine nucleotide exchange factors is responsible for activation of Ras-family GTPases. Prog Nucleic Acid Res Mol Biol. 2002;71:391-444.
    • (2002) Prog Nucleic Acid Res Mol Biol. , vol.71 , pp. 391-444
    • Quilliam, L.A.1    Rebhun, J.F.2    Castro, A.F.3
  • 90
    • 1642482866 scopus 로고    scopus 로고
    • Rap1-mediated lymphocyte function-associated antigen-1 activation by the T cell antigen receptor is dependent on phospholipase C-gamma1
    • Katagiri K, Shimonaka M, Kinashi T. Rap1-mediated lymphocyte function-associated antigen-1 activation by the T cell antigen receptor is dependent on phospholipase C-gamma1. J Biol Chem. 2004;279(12):11875-11881.
    • (2004) J Biol Chem. , vol.279 , Issue.12 , pp. 11875-11881
    • Katagiri, K.1    Shimonaka, M.2    Kinashi, T.3
  • 91
    • 34249863368 scopus 로고    scopus 로고
    • Mice lacking the signaling molecule CalDAG-GEFI represent a model for leukocyte adhesion deficiency type III
    • Bergmeier W, Goerge T, Wang HW, et al. Mice lacking the signaling molecule CalDAG-GEFI represent a model for leukocyte adhesion deficiency type III. J Clin Invest. 2007;117(6):1699-1707.
    • (2007) J Clin Invest. , vol.117 , Issue.6 , pp. 1699-1707
    • Bergmeier, W.1    Goerge, T.2    Wang, H.W.3
  • 92
    • 4644221351 scopus 로고    scopus 로고
    • CalDAG-GEFI integrates signaling for platelet aggregation and thrombus formation
    • Crittenden JR, Bergmeier W, Zhang Y, et al. CalDAG-GEFI integrates signaling for platelet aggregation and thrombus formation. Nat Med. 2004;10(9):982-986.
    • (2004) Nat Med. , vol.10 , Issue.9 , pp. 982-986
    • Crittenden, J.R.1    Bergmeier, W.2    Zhang, Y.3
  • 93
    • 84903761647 scopus 로고    scopus 로고
    • Human CalDAG-GEFI gene (RASGRP2) mutation affects platelet function and causes severe bleeding
    • Canault M, Ghalloussi D, Grosdidier C, et al. Human CalDAG-GEFI gene (RASGRP2) mutation affects platelet function and causes severe bleeding. J Exp Med. 2014;211(7):1349-1362.
    • (2014) J Exp Med. , vol.211 , Issue.7 , pp. 1349-1362
    • Canault, M.1    Ghalloussi, D.2    Grosdidier, C.3
  • 94
    • 0032480888 scopus 로고    scopus 로고
    • Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP
    • de Rooij J, Zwartkruis FJ, Verheijen MH, et al. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature. 1998;396(6710):474-477.
    • (1998) Nature , vol.396 , Issue.6710 , pp. 474-477
    • De Rooij, J.1    Zwartkruis, F.J.2    Verheijen, M.H.3
  • 95
    • 0032545328 scopus 로고    scopus 로고
    • A family of cAMP-binding proteins that directly activate Rap1
    • Kawasaki H, Springett GM, Mochizuki N, et al. A family of cAMP-binding proteins that directly activate Rap1. Science. 1998;282(5397):2275-2279.
    • (1998) Science , vol.282 , Issue.5397 , pp. 2275-2279
    • Kawasaki, H.1    Springett, G.M.2    Mochizuki, N.3
  • 96
    • 17044386676 scopus 로고    scopus 로고
    • Role of Rap1 in promoting sickle red blood cell adhesion to laminin via BCAM/LU
    • Murphy MM, Zayed MA, Evans A, et al. Role of Rap1 in promoting sickle red blood cell adhesion to laminin via BCAM/LU. Blood. 2005;105(8):3322-3329.
    • (2005) Blood , vol.105 , Issue.8 , pp. 3322-3329
    • Murphy, M.M.1    Zayed, M.A.2    Evans, A.3
  • 98
    • 0037441566 scopus 로고    scopus 로고
    • Characterisation of PDZ-GEFs, a family of guanine nucleotide exchange factors specific for Rap1 and Rap2
    • Kuiperij HB, de Rooij J, Rehmann H, et al. Characterisation of PDZ-GEFs, a family of guanine nucleotide exchange factors specific for Rap1 and Rap2. Biochim Biophys Acta. 2003;1593(2-3):141-149.
    • (2003) Biochim Biophys Acta , vol.1593 , Issue.2-3 , pp. 141-149
    • Kuiperij, H.B.1    De Rooij, J.2    Rehmann, H.3
  • 99
    • 0037423929 scopus 로고    scopus 로고
    • DOCK4, a GTPase activator, is disrupted during tumorigenesis
    • Yajnik V, Paulding C, Sordella R, et al. DOCK4, a GTPase activator, is disrupted during tumorigenesis. Cell. 2003;112(5):673-684.
    • (2003) Cell. , vol.112 , Issue.5 , pp. 673-684
    • Yajnik, V.1    Paulding, C.2    Sordella, R.3
  • 100
    • 0025961448 scopus 로고
    • Purification of a plasma membrane-associated GTPase-activating protein specific for rap1/Krev-1 from HL60 cells
    • Polakis PG, Rubinfeld B, Evans T, McCormick F. Purification of a plasma membrane-associated GTPase-activating protein specific for rap1/Krev-1 from HL60 cells. Proc Natl Acad Sci USA. 1991;88(1):239-243.
    • (1991) Proc Natl Acad Sci USA , vol.88 , Issue.1 , pp. 239-243
    • Polakis, P.G.1    Rubinfeld, B.2    Evans, T.3    McCormick, F.4
  • 101
    • 0033606980 scopus 로고    scopus 로고
    • Activation of the ERK/MAPK pathway by an isoform of rap1GAP associated with G alpha(i)
    • Mochizuki N, Ohba Y, Kiyokawa E, et al. Activation of the ERK/MAPK pathway by an isoform of rap1GAP associated with G alpha(i). Nature. 1999;400(6747):891-894.
    • (1999) Nature , vol.400 , Issue.6747 , pp. 891-894
    • Mochizuki, N.1    Ohba, Y.2    Kiyokawa, E.3
  • 102
    • 0028947758 scopus 로고
    • Molecular cloning of a novel mitogen-inducible nuclear protein with a Ran GTPase-activating domain that affects cell cycle progression
    • Hattori M, Tsukamoto N, Nur-e-Kamal MS, et al. Molecular cloning of a novel mitogen-inducible nuclear protein with a Ran GTPase-activating domain that affects cell cycle progression. Mol Cell Biol. 1995;15(1):552-560.
    • (1995) Mol Cell Biol. , vol.15 , Issue.1 , pp. 552-560
    • Hattori, M.1    Tsukamoto, N.2    Nur-e-Kamal, M.S.3
  • 103
    • 0030780650 scopus 로고    scopus 로고
    • Human SPA-1 gene product selectively expressed in lymphoid tissues is a specific GTPase-activating protein for Rap1 and Rap2. Segregate expression profiles from a rap1GAP gene product
    • Kurachi H, Wada Y, Tsukamoto N, et al. Human SPA-1 gene product selectively expressed in lymphoid tissues is a specific GTPase-activating protein for Rap1 and Rap2. Segregate expression profiles from a rap1GAP gene product. J Biol Chem. 1997;272(44):28081-28088.
    • (1997) J Biol Chem. , vol.272 , Issue.44 , pp. 28081-28088
    • Kurachi, H.1    Wada, Y.2    Tsukamoto, N.3
  • 104
    • 10744228326 scopus 로고    scopus 로고
    • Myeloproliferative stem cell disorders by deregulated Rap1 activation in SPA-1-deficient mice
    • Ishida D, Kometani K, Yang H, et al. Myeloproliferative stem cell disorders by deregulated Rap1 activation in SPA-1-deficient mice. Cancer Cell. 2003;4(1):55-65.
    • (2003) Cancer Cell. , vol.4 , Issue.1 , pp. 55-65
    • Ishida, D.1    Kometani, K.2    Yang, H.3
  • 105
    • 17044406762 scopus 로고    scopus 로고
    • Rap1GAP2 is a new GTPase-activating protein of Rap1 expressed in human platelets
    • Schultess J, Danielewski O, Smolenski AP. Rap1GAP2 is a new GTPase-activating protein of Rap1 expressed in human platelets. Blood. 2005;105(8):3185-3192.
    • (2005) Blood , vol.105 , Issue.8 , pp. 3185-3192
    • Schultess, J.1    Danielewski, O.2    Smolenski, A.P.3
  • 106
    • 84869146656 scopus 로고    scopus 로고
    • Rap1-interacting adapter molecule (RIAM) associates with the plasma membrane via a proximity detector
    • Wynne JP, Wu J, Su W, et al. Rap1-interacting adapter molecule (RIAM) associates with the plasma membrane via a proximity detector. J Cell Biol. 2012;199(2):317-330.
    • (2012) J Cell Biol. , vol.199 , Issue.2 , pp. 317-330
    • Wynne, J.P.1    Wu, J.2    Su, W.3
  • 107
    • 34347337643 scopus 로고    scopus 로고
    • RIAM links the ADAP/SKAP-55 signaling module to Rap1, facilitating T-cell-receptor-mediated integrin activation
    • Ménasché G, Kliche S, Chen EJ, Stradal TE, Schraven B, Koretzky G. RIAM links the ADAP/SKAP-55 signaling module to Rap1, facilitating T-cell-receptor-mediated integrin activation. Mol Cell Biol. 2007;27(11):4070-4081.
    • (2007) Mol Cell Biol. , vol.27 , Issue.11 , pp. 4070-4081
    • Ménasché, G.1    Kliche, S.2    Chen, E.J.3    Stradal, T.E.4    Schraven, B.5    Koretzky, G.6
  • 108
    • 33748454742 scopus 로고    scopus 로고
    • Reconstructing and deconstructing agonist-induced activation of integrin alphaIIbbeta3
    • Han J, Lim CJ, Watanabe N, et al. Reconstructing and deconstructing agonist-induced activation of integrin alphaIIbbeta3. Curr Biol. 2006;16(18):1796-1806.
    • (2006) Curr Biol. , vol.16 , Issue.18 , pp. 1796-1806
    • Han, J.1    Lim, C.J.2    Watanabe, N.3
  • 109
    • 64149100431 scopus 로고    scopus 로고
    • RIAM activates integrins by linking talin to ras GTPase membrane-targeting sequences
    • Lee HS, Lim CJ, Puzon-McLaughlin W, Shattil SJ, Ginsberg MH. RIAM activates integrins by linking talin to ras GTPase membrane-targeting sequences. J Biol Chem. 2009;284(8):5119-5127.
    • (2009) J Biol Chem. , vol.284 , Issue.8 , pp. 5119-5127
    • Lee, H.S.1    Lim, C.J.2    Puzon-McLaughlin, W.3    Shattil, S.J.4    Ginsberg, M.H.5
  • 110
    • 84877157661 scopus 로고    scopus 로고
    • Two modes of integrin activation form a binary molecular switch in adhesion maturation
    • Lee HS, Anekal P, Lim CJ, Liu CC, Ginsberg MH. Two modes of integrin activation form a binary molecular switch in adhesion maturation. Mol Biol Cell. 2013;24(9):1354-1362.
    • (2013) Mol Biol Cell. , vol.24 , Issue.9 , pp. 1354-1362
    • Lee, H.S.1    Anekal, P.2    Lim, C.J.3    Liu, C.C.4    Ginsberg, M.H.5
  • 111
    • 84943190324 scopus 로고    scopus 로고
    • A RIAM/lamellipodin-talin-integrin complex forms the tip of sticky fingers that guide cell migration
    • Lagarrigue F, Vikas Anekal P, Lee HS, et al. A RIAM/lamellipodin-talin-integrin complex forms the tip of sticky fingers that guide cell migration. Nat Commun. 2015;6:8492.
    • (2015) Nat Commun. , vol.6 , pp. 8492
    • Lagarrigue, F.1    Vikas Anekal, P.2    Lee, H.S.3
  • 112
    • 84867401725 scopus 로고    scopus 로고
    • The MRL proteins: Adapting cell adhesion, migration and growth
    • Coló GP, Lafuente EM, Teixidó J. The MRL proteins: adapting cell adhesion, migration and growth. Eur J Cell Biol. 2012;91(11-12):861-868.
    • (2012) Eur J Cell Biol. , vol.91 , Issue.11-12 , pp. 861-868
    • Coló, G.P.1    Lafuente, E.M.2    Teixidó, J.3
  • 113
    • 84920996869 scopus 로고    scopus 로고
    • Rap1-GTP-interacting adaptor molecule (RIAM) is dispensable for platelet integrin activation and function in mice
    • Stritt S, Wolf K, Lorenz V, et al. Rap1-GTP-interacting adaptor molecule (RIAM) is dispensable for platelet integrin activation and function in mice. Blood. 2015;125(2):219-222.
    • (2015) Blood , vol.125 , Issue.2 , pp. 219-222
    • Stritt, S.1    Wolf, K.2    Lorenz, V.3
  • 114
    • 84951325487 scopus 로고    scopus 로고
    • Loss of the Rap-1 effector RIAM results in leukocyte adhesion deficiency due to impaired beta2 integrin function in mice
    • Klapproth S, Sperandio M, Pinheiro EM, et al. Loss of the Rap-1 effector RIAM results in leukocyte adhesion deficiency due to impaired beta2 integrin function in mice. Blood. 2015;126(25):2704-2712.
    • (2015) Blood , vol.126 , Issue.25 , pp. 2704-2712
    • Klapproth, S.1    Sperandio, M.2    Pinheiro, E.M.3
  • 115
    • 84951299064 scopus 로고    scopus 로고
    • Rap1 and its effector RIAM are required for lymphocyte trafficking
    • Su W, Wynne J, Pinheiro EM, et al. Rap1 and its effector RIAM are required for lymphocyte trafficking. Blood. 2015;126(25):2695-2703.
    • (2015) Blood , vol.126 , Issue.25 , pp. 2695-2703
    • Su, W.1    Wynne, J.2    Pinheiro, E.M.3
  • 116
    • 84925811153 scopus 로고    scopus 로고
    • Copy number analysis of the murine platelet proteome spanning the complete abundance range
    • Zeiler M, Moser M, Mann M. Copy number analysis of the murine platelet proteome spanning the complete abundance range. Mol Cell Proteomics. 2014;13(12):3435-3445.
    • (2014) Mol Cell Proteomics , vol.13 , Issue.12 , pp. 3435-3445
    • Zeiler, M.1    Moser, M.2    Mann, M.3
  • 117
    • 84879090637 scopus 로고    scopus 로고
    • RIAM (Rap1-interacting adaptor molecule) regulates complement-dependent phagocytosis
    • Medraño-Fernandez I, Reyes R, Olazabal I, et al. RIAM (Rap1-interacting adaptor molecule) regulates complement-dependent phagocytosis. Cell Mol Life Sci. 2013;70(13):2395-2410.
    • (2013) Cell Mol Life Sci. , vol.70 , Issue.13 , pp. 2395-2410
    • Medraño-Fernandez, I.1    Reyes, R.2    Olazabal, I.3
  • 119
    • 14644391560 scopus 로고    scopus 로고
    • Targeting leukocyte integrins in human diseases
    • Yonekawa K, Harlan JM. Targeting leukocyte integrins in human diseases. J Leukoc Biol. 2005;77(2):129-140.
    • (2005) J Leukoc Biol. , vol.77 , Issue.2 , pp. 129-140
    • Yonekawa, K.1    Harlan, J.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.