메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 1420-1429

Siamese instance search for tracking

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; COMPUTER VISION; PATTERN RECOGNITION;

EID: 84986295247     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.158     Document Type: Conference Paper
Times cited : (1339)

References (58)
  • 1
    • 33845596140 scopus 로고    scopus 로고
    • Robust fragmentsbased tracking using the integral histogram
    • 2
    • A. Adam, E. Rivlin, and I. Shimshoni. Robust fragmentsbased tracking using the integral histogram. In CVPR, 2006.
    • (2006) CVPR
    • Adam, A.1    Rivlin, E.2    Shimshoni, I.3
  • 4
    • 79551562584 scopus 로고    scopus 로고
    • Large displacement optical flow: Descriptor matching in variational motion estimation
    • 6
    • T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. TPAMI, 33 (3): 500-513, 2011.
    • (2011) TPAMI , vol.33 , Issue.3 , pp. 500-513
    • Brox, T.1    Malik, J.2
  • 5
    • 24644436425 scopus 로고    scopus 로고
    • Learning a similarity metric discriminatively, with application to face verification
    • 3, 4
    • S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with application to face verification. In CVPR, 2005.
    • (2005) CVPR
    • Chopra, S.1    Hadsell, R.2    LeCun, Y.3
  • 6
    • 0033682434 scopus 로고    scopus 로고
    • Real-time tracking of non-rigid objects using mean shift
    • 1, 2
    • D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking of non-rigid objects using mean shift. In CVPR, 2000.
    • (2000) CVPR
    • Comaniciu, D.1    Ramesh, V.2    Meer, P.3
  • 8
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained partbased models
    • 5
    • P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained partbased models. TPAMI, 32 (9): 1627-1645, 2010.
    • (2010) TPAMI , vol.32 , Issue.9 , pp. 1627-1645
    • Felzenszwalb, P.F.1    Girshick, R.B.2    McAllester, D.3    Ramanan, D.4
  • 9
    • 84956699399 scopus 로고    scopus 로고
    • Transfer learning based visual tracking with Gaussian processes regression
    • 6
    • J. Gao, H. Ling, W. Hu, and J. Xing. Transfer learning based visual tracking with Gaussian processes regression. In ECCV, 2014.
    • (2014) ECCV
    • Gao, J.1    Ling, H.2    Hu, W.3    Xing, J.4
  • 10
    • 84955316677 scopus 로고    scopus 로고
    • arXiv preprint arXiv: 1504. 08083, 3, 4
    • R. Girshick. Fast r-cnn. ArXiv preprint arXiv: 1504. 08083, 2015.
    • (2015) Fast R-cnn
    • Girshick, R.1
  • 11
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • 5
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 12
    • 84856645114 scopus 로고    scopus 로고
    • Hough-based tracking of non-rigid objects
    • 2
    • M. Godec, P. M. Roth, and H. Bischof. Hough-based tracking of non-rigid objects. In ICCV, 2011.
    • (2011) ICCV
    • Godec, M.1    Roth, P.M.2    Bischof, H.3
  • 13
    • 84959255777 scopus 로고    scopus 로고
    • Matchnet: Unifying feature and metric learning for patchbased matching
    • 3
    • X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg. Matchnet: Unifying feature and metric learning for patchbased matching. In CVPR, 2015.
    • (2015) CVPR
    • Han, X.1    Leung, T.2    Jia, Y.3    Sukthankar, R.4    Berg, A.C.5
  • 14
    • 84856659290 scopus 로고    scopus 로고
    • Struck: Structured output tracking with kernels
    • 2, 5, 6
    • S. Hare, A. Saffari, and P. H. Torr. Struck: Structured output tracking with kernels. In ICCV, 2011.
    • (2011) ICCV
    • Hare, S.1    Saffari, A.2    Torr, P.H.3
  • 15
    • 84959236250 scopus 로고    scopus 로고
    • Hypercolumns for object segmentation and fine-grained localization
    • 4
    • B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hypercolumns for object segmentation and fine-grained localization. In CVPR, 2015.
    • (2015) CVPR
    • Hariharan, B.1    Arbeláez, P.2    Girshick, R.3    Malik, J.4
  • 16
    • 84921068240 scopus 로고    scopus 로고
    • Efficient learning of linear predictors for template tracking
    • 2
    • S. Holzer, S. Ilic, D. J. Tan, M. Pollefeys, and N. Navab. Efficient learning of linear predictors for template tracking. IJCV, 2015.
    • (2015) IJCV
    • Holzer, S.1    Ilic, S.2    Tan, D.J.3    Pollefeys, M.4    Navab, N.5
  • 17
    • 84969506912 scopus 로고    scopus 로고
    • Online tracking by learning discriminative saliency map with convolutional neural network
    • 2
    • S. Hong, T. You, S. Kwak, and B. Han. Online tracking by learning discriminative saliency map with convolutional neural network. In ICML, 2015.
    • (2015) ICML
    • Hong, S.1    You, T.2    Kwak, S.3    Han, B.4
  • 18
    • 84959254211 scopus 로고    scopus 로고
    • Multi-store tracker (muster): A cognitive psychology inspired approach to object tracking
    • 2, 6, 7, 8
    • Z. Hong, Z. Chen, C. Wang, X. Mei, D. Prokhorov, and D. Tao. Multi-store tracker (muster): A cognitive psychology inspired approach to object tracking. In CVPR, 2015.
    • (2015) CVPR
    • Hong, Z.1    Chen, Z.2    Wang, C.3    Mei, X.4    Prokhorov, D.5    Tao, D.6
  • 19
    • 85004012518 scopus 로고    scopus 로고
    • Enable scale and aspect ratio adaptability in visual tracking with detection proposals
    • 6
    • D. Huang, L. Luo, M. Wen, Z. Chen, and C. Zhang. Enable scale and aspect ratio adaptability in visual tracking with detection proposals. In BMVC, 2015.
    • (2015) BMVC
    • Huang, D.1    Luo, L.2    Wen, M.3    Chen, Z.4    Zhang, C.5
  • 20
    • 70449560133 scopus 로고    scopus 로고
    • Hamming embedding and weak geometric consistency for large scale image search
    • 3
    • H. Jégou, M. Douze, and C. Schmid. Hamming embedding and weak geometric consistency for large scale image search. In ECCV, 2008.
    • (2008) ECCV
    • Jégou, H.1    Douze, M.2    Schmid, C.3
  • 22
    • 84866648092 scopus 로고    scopus 로고
    • Randomized visual phrases for object search
    • 3
    • Y. Jiang, J. Meng, and J. Yuan. Randomized visual phrases for object search. In CVPR, 2012.
    • (2012) CVPR
    • Jiang, Y.1    Meng, J.2    Yuan, J.3
  • 23
    • 84861312439 scopus 로고    scopus 로고
    • Tracking-learningdetection
    • 2, 6
    • Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learningdetection. TPAMI, 34 (7): 1409-1422, 2012.
    • (2012) TPAMI , vol.34 , Issue.7 , pp. 1409-1422
    • Kalal, Z.1    Mikolajczyk, K.2    Matas, J.3
  • 24
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • 3, 4
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 25
    • 85088746113 scopus 로고    scopus 로고
    • Deeptrack: Learning discriminative feature representations by convolutional neural networks for visual tracking
    • 2
    • H. Li, Y. Li, F. Porikli, et al. Deeptrack: Learning discriminative feature representations by convolutional neural networks for visual tracking. In BMVC, 2014.
    • (2014) BMVC
    • Li, H.1    Li, Y.2    Porikli, F.3
  • 27
    • 84959245070 scopus 로고    scopus 로고
    • Learning deep representations for ground-to-aerial geolocalization
    • 3
    • T.-Y. Lin, Y. Cui, S. Belongie, J. Hays, and C. Tech. Learning deep representations for ground-to-aerial geolocalization. In CVPR, 2015.
    • (2015) CVPR
    • Lin, T.-Y.1    Cui, Y.2    Belongie, S.3    Hays, J.4    Tech, C.5
  • 28
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • 4
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 29
    • 0019647180 scopus 로고
    • An iterative image registration technique with an application to stereo vision
    • 1, 2
    • B. D. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In IJCAI, 1981.
    • (1981) IJCAI
    • Lucas, B.D.1    Kanade, T.2
  • 30
    • 85097586621 scopus 로고    scopus 로고
    • Robust visual tracking using l1 minimization
    • 2
    • X. Mei and H. Ling. Robust visual tracking using l1 minimization. In ICCV, 2009.
    • (2009) ICCV
    • Mei, X.1    Ling, H.2
  • 31
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted boltzmann machines
    • 3
    • V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In ICML, 2010.
    • (2010) ICML
    • Nair, V.1    Hinton, G.E.2
  • 32
    • 33744916537 scopus 로고    scopus 로고
    • Robust tracking using foreground-background texture discrimination
    • 1, 2
    • H. T. Nguyen and A. W. Smeulders. Robust tracking using foreground-background texture discrimination. Int. J. Comput. Vision, 2006.
    • (2006) Int. J. Comput. Vision
    • Nguyen, H.T.1    Smeulders, A.W.2
  • 33
    • 34948842416 scopus 로고    scopus 로고
    • Robust occlusion handling in object tracking
    • 1
    • J. Pan and B. Hu. Robust occlusion handling in object tracking. In CVPR, 2007.
    • (2007) CVPR
    • Pan, J.1    Hu, B.2
  • 34
    • 84908680997 scopus 로고    scopus 로고
    • Object tracking by oversampling local features
    • 2
    • F. Pernici and A. D. Bimbo. Object tracking by oversampling local features. TPAMI, 2014.
    • (2014) TPAMI
    • Pernici, F.1    Bimbo, A.D.2
  • 35
    • 85009909479 scopus 로고    scopus 로고
    • Improving the fisher kernel for large-scale image classification
    • 3
    • F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher kernel for large-scale image classification. In ECCV, 2010.
    • (2010) ECCV
    • Perronnin, F.1    Sánchez, J.2    Mensink, T.3
  • 36
    • 34948903793 scopus 로고    scopus 로고
    • Object retrieval with large vocabularies and fast spatial matching
    • 2, 3
    • J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and fast spatial matching. In CVPR, 2007.
    • (2007) CVPR
    • Philbin, J.1    Chum, O.2    Isard, M.3    Sivic, J.4    Zisserman, A.5
  • 37
    • 84887392826 scopus 로고    scopus 로고
    • Query adaptive similarity for large scale object retrieval
    • 3
    • D. Qin, C. Wengert, and L. van Gool. Query adaptive similarity for large scale object retrieval. In CVPR, 2013.
    • (2013) CVPR
    • Qin, D.1    Wengert, C.2    Van Gool, L.3
  • 38
    • 39749173057 scopus 로고    scopus 로고
    • Incremental learning for robust visual tracking
    • 1, 2
    • D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang. Incremental learning for robust visual tracking. IJCV, 2008.
    • (2008) IJCV
    • Ross, D.A.1    Lim, J.2    Lin, R.-S.3    Yang, M.-H.4
  • 39
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • 3, 4
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 40
    • 0345414182 scopus 로고    scopus 로고
    • Video google: A text retrieval approach to object matching in videos
    • 3
    • J. Sivic and A. Zisserman. Video google: A text retrieval approach to object matching in videos. In ICCV, 2003.
    • (2003) ICCV
    • Sivic, J.1    Zisserman, A.2
  • 42
    • 84911198048 scopus 로고    scopus 로고
    • Deepface: Closing the gap to human-level performance in face verification
    • 3
    • Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the gap to human-level performance in face verification. In CVPR, 2014.
    • (2014) CVPR
    • Taigman, Y.1    Yang, M.2    Ranzato, M.3    Wolf, L.4
  • 43
    • 84911404141 scopus 로고    scopus 로고
    • Locality in generic instance search from one example
    • 2, 3
    • R. Tao, E. Gavves, C. G. Snoek, and A. W. M. Smeulders. Locality in generic instance search from one example. In CVPR, 2014.
    • (2014) CVPR
    • Tao, R.1    Gavves, E.2    Snoek, C.G.3    Smeulders, A.W.M.4
  • 44
    • 84959227583 scopus 로고    scopus 로고
    • Attributes and categories for generic instance search from one example
    • 2, 3
    • R. Tao, A. W. M. Smeulders, and S.-F. Chang. Attributes and categories for generic instance search from one example. In CVPR, 2015.
    • (2015) CVPR
    • Tao, R.1    Smeulders, A.W.M.2    Chang, S.-F.3
  • 45
    • 84898829999 scopus 로고    scopus 로고
    • To aggregate or not to aggregate: Selective match kernels for image search
    • 3
    • G. Tolias, Y. Avrithis, and H. Jégou. To aggregate or not to aggregate: Selective match kernels for image search. In ICCV, 2013.
    • (2013) ICCV
    • Tolias, G.1    Avrithis, Y.2    Jégou, H.3
  • 46
    • 84989913098 scopus 로고    scopus 로고
    • Image search with selective match kernels: Aggregation across single and multiple images
    • 2
    • G. Tolias, Y. Avrithis, and H. Jgou. Image search with selective match kernels: Aggregation across single and multiple images. International Journal of Computer Vision, 2015.
    • (2015) International Journal of Computer Vision
    • Tolias, G.1    Avrithis, Y.2    Jgou, H.3
  • 48
    • 84973865253 scopus 로고    scopus 로고
    • Understanding and diagnosing visual tracking systems
    • 6
    • N. Wang, J. Shi, D.-Y. Yeung, and J. Jia. Understanding and diagnosing visual tracking systems. In ICCV, 2015.
    • (2015) ICCV
    • Wang, N.1    Shi, J.2    Yeung, D.-Y.3    Jia, J.4
  • 49
    • 84898957022 scopus 로고    scopus 로고
    • Learning a deep compact image representation for visual tracking
    • 2
    • N. Wang and D.-Y. Yeung. Learning a deep compact image representation for visual tracking. In NIPS, 2013.
    • (2013) NIPS
    • Wang, N.1    Yeung, D.-Y.2
  • 51
    • 84986260012 scopus 로고    scopus 로고
    • Online object tracking, learning and parsing with and-or graphs
    • 2
    • T. Wu, Y. Lu, and S. Zhu. Online object tracking, learning and parsing with and-or graphs. TPAMI, 2015.
    • (2015) TPAMI
    • Wu, T.1    Lu, Y.2    Zhu, S.3
  • 52
    • 84887348427 scopus 로고    scopus 로고
    • Online object tracking: A benchmark
    • 1, 5, 6, 7, 8
    • Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A benchmark. In CVPR, 2013.
    • (2013) CVPR
    • Wu, Y.1    Lim, J.2    Yang, M.-H.3
  • 53
    • 84959179619 scopus 로고    scopus 로고
    • Learning to compare image patches via convolutional neural networks
    • 3
    • S. Zagoruyko and N. Komodakis. Learning to compare image patches via convolutional neural networks. In CVPR, 2015.
    • (2015) CVPR
    • Zagoruyko, S.1    Komodakis, N.2
  • 54
    • 84952674245 scopus 로고    scopus 로고
    • Computing the stereo matching cost with a convolutional neural network
    • 3
    • J. Zbontar and Y. LeCun. Computing the stereo matching cost with a convolutional neural network. In CVPR, 2015.
    • (2015) CVPR
    • Zbontar, J.1    LeCun, Y.2
  • 55
    • 85009899017 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • 4
    • M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014.
    • (2014) ECCV
    • Zeiler, M.D.1    Fergus, R.2
  • 56
    • 85009901660 scopus 로고    scopus 로고
    • Meem: Robust tracking via multiple experts using entropy minimization
    • 2, 6, 7, 8
    • J. Zhang, S. Ma, and S. Sclaroff. Meem: Robust tracking via multiple experts using entropy minimization. In ECCV, 2014.
    • (2014) ECCV
    • Zhang, J.1    Ma, S.2    Sclaroff, S.3
  • 57
    • 84866648566 scopus 로고    scopus 로고
    • Robust object tracking via sparsity-based collaborative model
    • 6
    • W. Zhong, H. Lu, and M.-H. Yang. Robust object tracking via sparsity-based collaborative model. In CVPR, 2012.
    • (2012) CVPR
    • Zhong, W.1    Lu, H.2    Yang, M.-H.3
  • 58
    • 85009853104 scopus 로고    scopus 로고
    • Edge boxes: Locating object proposals from edges
    • 8
    • C. L. Zitnick and P. Dollár. Edge boxes: Locating object proposals from edges. In ECCV, 2014.
    • (2014) ECCV
    • Zitnick, C.L.1    Dollár, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.