-
2
-
-
3242681758
-
Support vector tracking
-
S. Avidan. Support vector tracking. TPAMI, 26(8):1064-1072, 2004
-
(2004)
TPAMI
, vol.26
, Issue.8
, pp. 1064-1072
-
-
Avidan, S.1
-
3
-
-
33947229323
-
Ensemble tracking
-
S. Avidan. Ensemble tracking. TPAMI, 29(2):261-271, 2007
-
(2007)
TPAMI
, vol.29
, Issue.2
, pp. 261-271
-
-
Avidan, S.1
-
4
-
-
79959527478
-
Robust object tracking with online multiple instance learning
-
B. Babenko, M.-H. Yang, and S. Belongie. Robust object tracking with online multiple instance learning. TPAMI, 33(8):1619-1632, 2011
-
(2011)
TPAMI
, vol.33
, Issue.8
, pp. 1619-1632
-
-
Babenko, B.1
Yang, M.-H.2
Belongie, S.3
-
5
-
-
77955993278
-
Visual object tracking using adaptive correlation filters
-
D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui. Visual object tracking using adaptive correlation filters. In CVPR, pages 2544-2550, 2010
-
(2010)
CVPR
, pp. 2544-2550
-
-
Bolme, D.S.1
Beveridge, J.R.2
Draper, B.A.3
Lui, Y.M.4
-
8
-
-
80052910974
-
Context tracker: Exploring supporters and distracters in unconstrained environments
-
T. B. Dinh, N. Vo, and G. Medioni. Context tracker: Exploring supporters and distracters in unconstrained environments. In CVPR, pages 1177-1184, 2011
-
(2011)
CVPR
, pp. 1177-1184
-
-
Dinh, T.B.1
Vo, N.2
Medioni, G.3
-
9
-
-
0004141817
-
Memory: A contribution to experimental psychology
-
Columbia university
-
H. Ebbinghaus. Memory: A contribution to experimental psychology. Number 3. Teachers college, Columbia university, 1913
-
(1913)
Teachers College
, Issue.3
-
-
Ebbinghaus, H.1
-
11
-
-
77955422240
-
Object detection with discriminatively trained partbased models
-
P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained partbased models. TPAMI, 32(9):1627-1645, 2010
-
(2010)
TPAMI
, vol.32
, Issue.9
, pp. 1627-1645
-
-
Felzenszwalb, P.F.1
Girshick, R.B.2
McAllester, D.3
Ramanan, D.4
-
12
-
-
77956006668
-
Tracking the invisible: Learning where the object might be
-
H. Grabner, J. Matas, L. Van Gool, and P. Cattin. Tracking the invisible: Learning where the object might be. In CVPR, pages 1285-1292, 2010
-
(2010)
CVPR
, pp. 1285-1292
-
-
Grabner, H.1
Matas, J.2
Van Gool, L.3
Cattin, P.4
-
13
-
-
84890543083
-
Speech recognition with deep recurrent neural networks
-
A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural networks. In ICASSP, pages 6645-6649, 2013
-
(2013)
ICASSP
, pp. 6645-6649
-
-
Graves, A.1
Mohamed, A.-R.2
Hinton, G.3
-
14
-
-
84856659290
-
Struck: Structured output tracking with kernels
-
S. Hare, A. Saffari, and P. H. Torr. Struck: Structured output tracking with kernels. In ICCV, pages 263-270, 2011
-
(2011)
ICCV
, pp. 263-270
-
-
Hare, S.1
Saffari, A.2
Torr, P.H.3
-
16
-
-
84922907906
-
Highspeed tracking with kernelized correlation filters
-
J. Henriques, R. Caseiro, P. Martins, and J. Batista. Highspeed tracking with kernelized correlation filters. TPAMI, pages 583-596, 2015
-
(2015)
TPAMI
, pp. 583-596
-
-
Henriques, J.1
Caseiro, R.2
Martins, P.3
Batista, J.4
-
17
-
-
84867840191
-
Exploiting the circulant structure of tracking-by-detection with kernels
-
J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. Exploiting the circulant structure of tracking-by-detection with kernels. In ECCV, pages 702-715. 2012
-
(2012)
ECCV
, pp. 702-715
-
-
Henriques, J.F.1
Caseiro, R.2
Martins, P.3
Batista, J.4
-
19
-
-
84898809070
-
Tracking via robust multi-task multi-view joint sparse representation
-
Z. Hong, X. Mei, D. Prokhorov, and D. Tao. Tracking via robust multi-task multi-view joint sparse representation. In ICCV, pages 649-656, 2013
-
(2013)
ICCV
, pp. 649-656
-
-
Hong, Z.1
Mei, X.2
Prokhorov, D.3
Tao, D.4
-
20
-
-
84867860674
-
Dual-force metric learning for robust distracter-resistant tracker
-
Z. Hong, X. Mei, and D. Tao. Dual-force metric learning for robust distracter-resistant tracker. In ECCV, pages 513-527, 2012
-
(2012)
ECCV
, pp. 513-527
-
-
Hong, Z.1
Mei, X.2
Tao, D.3
-
21
-
-
84906329965
-
Tracking using multilevel quantizations
-
Z. Hong, C. Wang, X. Mei, D. Prokhorov, and D. Tao. Tracking using multilevel quantizations. In ECCV, pages 155-171, 2014
-
(2014)
ECCV
, pp. 155-171
-
-
Hong, Z.1
Wang, C.2
Mei, X.3
Prokhorov, D.4
Tao, D.5
-
22
-
-
84866725281
-
Visual tracking via adaptive structural local sparse appearance model
-
X. Jia, H. Lu, and M.-H. Yang. Visual tracking via adaptive structural local sparse appearance model. In CVPR, pages 1822-1829, 2012
-
(2012)
CVPR
, pp. 1822-1829
-
-
Jia, X.1
Lu, H.2
Yang, M.-H.3
-
23
-
-
84861312439
-
Tracking-learningdetection
-
Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learningdetection. TPAMI, 34(7):1409-1422, 2012
-
(2012)
TPAMI
, vol.34
, Issue.7
, pp. 1409-1422
-
-
Kalal, Z.1
Mikolajczyk, K.2
Matas, J.3
-
24
-
-
84996899169
-
The visual object tracking VOT2014 challenge results
-
M. Kristan and R. Pflugfelder et al. The visual object tracking VOT2014 challenge results. In ECCV Workshop, pages 1-27, 2014
-
(2014)
ECCV Workshop
, pp. 1-27
-
-
Kristan, M.1
Pflugfelder, R.2
-
25
-
-
84856684026
-
Learning occlusion with likelihoods for visual tracking
-
S. Kwak, W. Nam, B. Han, and J. H. Han. Learning occlusion with likelihoods for visual tracking. In ICCV, pages 1551-1558, 2011
-
(2011)
ICCV
, pp. 1551-1558
-
-
Kwak, S.1
Nam, W.2
Han, B.3
Han, J.H.4
-
26
-
-
77955995205
-
Visual tracking decomposition
-
J. Kwon and K. M. Lee. Visual tracking decomposition. In CVPR, pages 1269-1276, 2010
-
(2010)
CVPR
, pp. 1269-1276
-
-
Kwon, J.1
Lee, K.M.2
-
27
-
-
84863049929
-
Tracking by sampling trackers
-
J. Kwon and K. M. Lee. Tracking by sampling trackers. In ICCV, pages 1195-1202, 2011
-
(2011)
ICCV
, pp. 1195-1202
-
-
Kwon, J.1
Lee, K.M.2
-
28
-
-
84906501824
-
Robust visual tracking with double bounding box model
-
J. Kwon, J. Roh, K. M. Lee, and L. Van Gool. Robust visual tracking with double bounding box model. In ECCV, pages 377-392, 2014
-
(2014)
ECCV
, pp. 377-392
-
-
Kwon, J.1
Roh, J.2
Lee, K.M.3
Van Gool, L.4
-
29
-
-
84897541648
-
Long-term tracking through failure cases
-
K. Lebeda, S. Hadfield, J. Matas, and R. Bowden. Long-term tracking through failure cases. In ICCV Workshop, pages 153-160, 2013
-
(2013)
ICCV Workshop
, pp. 153-160
-
-
Lebeda, K.1
Hadfield, S.2
Matas, J.3
Bowden, R.4
-
30
-
-
84885606175
-
A survey of appearance models in visual object tracking
-
X. Li,W. Hu, C. Shen, Z. Zhang, A. Dick, and A. V. D. Hengel. A survey of appearance models in visual object tracking. TIST, 4(4):58, 2013
-
(2013)
TIST
, vol.4
, Issue.4
, pp. 58
-
-
Li, X.1
Hu, W.2
Shen, C.3
Zhang, Z.4
Dick, A.5
Hengel, A.V.D.6
-
31
-
-
84956693941
-
A scale adaptive kernel correlation filter tracker with feature integration
-
Y. Li and J. Zhu. A scale adaptive kernel correlation filter tracker with feature integration. In ECCV Workshop, 2014
-
(2014)
ECCV Workshop
-
-
Li, Y.1
Zhu, J.2
-
32
-
-
79953049203
-
Sift flow: Dense correspondence across scenes and its applications
-
C. Liu, J. Yuen, and A. Torralba. Sift flow: Dense correspondence across scenes and its applications. TPAMI, 33(5):978-994, 2011
-
(2011)
TPAMI
, vol.33
, Issue.5
, pp. 978-994
-
-
Liu, C.1
Yuen, J.2
Torralba, A.3
-
33
-
-
0033284915
-
Object recognition from local scale-invariant features
-
D. G. Lowe. Object recognition from local scale-invariant features. In ICCV, volume 2, pages 1150-1157, 1999
-
(1999)
ICCV
, vol.2
, pp. 1150-1157
-
-
Lowe, D.G.1
-
34
-
-
3042535216
-
Distinctive image features from scale-invariant keypoints
-
D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91-110, 2004
-
(2004)
IJCV
, vol.60
, Issue.2
, pp. 91-110
-
-
Lowe, D.G.1
-
35
-
-
0019647180
-
An iterative image registration technique with an application to stereo vision
-
B. D. Lucas, T. Kanade, et al. An iterative image registration technique with an application to stereo vision. In IJCAI, pages 674-679, 1981
-
(1981)
IJCAI
, pp. 674-679
-
-
Lucas, B.D.1
Kanade, T.2
-
37
-
-
80053126093
-
Robust visual tracking and vehicle classification via sparse representation
-
X. Mei and H. Ling. Robust visual tracking and vehicle classification via sparse representation. TPAMI, 33(11):2259-2272, 2011
-
(2011)
TPAMI
, vol.33
, Issue.11
, pp. 2259-2272
-
-
Mei, X.1
Ling, H.2
-
38
-
-
84904695947
-
Consensus-based matching and tracking of keypoints for object tracking
-
G. Nebehay and R. Pflugfelder. Consensus-based matching and tracking of keypoints for object tracking. In WACV, pages 862-869, 2014
-
(2014)
WACV
, pp. 862-869
-
-
Nebehay, G.1
Pflugfelder, R.2
-
39
-
-
84906491166
-
Extended lucas-kanade tracking
-
S. Oron, A. Bar-Hille, and S. Avidan. Extended lucas-kanade tracking. In ECCV, pages 142-156, 2014
-
(2014)
ECCV
, pp. 142-156
-
-
Oron, S.1
Bar-Hille, A.2
Avidan, S.3
-
40
-
-
84898798671
-
Finding the best from the second bestsinhibiting subjective bias in evaluation of visual tracking algorithms
-
Y. Pang and H. Ling. Finding the best from the second bestsinhibiting subjective bias in evaluation of visual tracking algorithms. In ICCV, pages 2784-2791, 2013
-
(2013)
ICCV
, pp. 2784-2791
-
-
Pang, Y.1
Ling, H.2
-
41
-
-
84908680997
-
Object tracking by oversampling local features
-
F. Pernici and A. Del Bimbo. Object tracking by oversampling local features. TPAMI, 36(12):2538-2551, 2014
-
(2014)
TPAMI
, vol.36
, Issue.12
, pp. 2538-2551
-
-
Pernici, F.1
Del Bimbo, A.2
-
42
-
-
39749173057
-
Incremental learning for robust visual tracking
-
D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang. Incremental learning for robust visual tracking. IJCV, 77(1-3):125-141, 2008
-
(2008)
IJCV
, vol.77
, Issue.1-3
, pp. 125-141
-
-
Ross, D.A.1
Lim, J.2
Lin, R.-S.3
Yang, M.-H.4
-
43
-
-
84903121415
-
Visual tracking: An experimental survey
-
A. Smeulders, D. Chu, R. Cucchiara, S. Calderara, A. Dehghan, and M. Shah. Visual tracking: An experimental survey. TPAMI, 36(7):1442-1468, 2014
-
(2014)
TPAMI
, vol.36
, Issue.7
, pp. 1442-1468
-
-
Smeulders, A.1
Chu, D.2
Cucchiara, R.3
Calderara, S.4
Dehghan, A.5
Shah, M.6
-
44
-
-
84887368146
-
Self-paced learning for long-term tracking
-
J. S. Supancic III and D. Ramanan. Self-paced learning for long-term tracking. In CVPR, pages 2379-2386, 2013
-
(2013)
CVPR
, pp. 2379-2386
-
-
Supancic, J.S.1
Ramanan, D.2
-
45
-
-
0033894631
-
Mlesac: A new robust estimator with application to estimating image geometry
-
P. H. Torr and A. Zisserman. Mlesac: A new robust estimator with application to estimating image geometry. CVIU, 78(1):138-156, 2000
-
(2000)
CVIU
, vol.78
, Issue.1
, pp. 138-156
-
-
Torr, P.H.1
Zisserman, A.2
-
46
-
-
67649842409
-
Learning color names for real-world applications
-
J. Van De Weijer, C. Schmid, J. Verbeek, and D. Larlus. Learning color names for real-world applications. TIP, 18(7):1512-1523, 2009
-
(2009)
TIP
, vol.18
, Issue.7
, pp. 1512-1523
-
-
Weijer De J.Van1
Schmid, C.2
Verbeek, J.3
Larlus, D.4
-
47
-
-
84874519372
-
Robust visual tracking using an adaptive coupled-layer visual model
-
L. Cehovin, M. Kristan, and A. Leonardis. Robust visual tracking using an adaptive coupled-layer visual model. TPAMI, 35(4):941-953, 2013
-
(2013)
TPAMI
, vol.35
, Issue.4
, pp. 941-953
-
-
Ehovin, L.C.1
Kristan, M.2
Leonardis, A.3
-
48
-
-
84887348427
-
Online object tracking: A benchmark
-
Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A benchmark. In CVPR, pages 2411-2418, 2013
-
(2013)
CVPR
, pp. 2411-2418
-
-
Wu, Y.1
Lim, J.2
Yang, M.-H.3
-
49
-
-
80053330652
-
Recent advances and trends in visual tracking: A review
-
H. Yang, L. Shao, F. Zheng, L. Wang, and Z. Song. Recent advances and trends in visual tracking: A review. Neurocomputing, 74(18):3823-3831, 2011
-
(2011)
Neurocomputing
, vol.74
, Issue.18
, pp. 3823-3831
-
-
Yang, H.1
Shao, L.2
Zheng, F.3
Wang, L.4
Song, Z.5
-
50
-
-
84906331169
-
Meem: Robust tracking via multiple experts using entropy minimization
-
J. Zhang, S. Ma, and S. Sclaroff. Meem: Robust tracking via multiple experts using entropy minimization. In ECCV, pages 188-203, 2014
-
(2014)
ECCV
, pp. 188-203
-
-
Zhang, J.1
Ma, S.2
Sclaroff, S.3
-
51
-
-
84866678444
-
Robust visual tracking via multi-task sparse learning
-
T. Zhang, B. Ghanem, S. Liu, and N. Ahuja. Robust visual tracking via multi-task sparse learning. In CVPR, pages 2042-2049, 2012
-
(2012)
CVPR
, pp. 2042-2049
-
-
Zhang, T.1
Ghanem, B.2
Liu, S.3
Ahuja, N.4
-
52
-
-
84866648566
-
Robust object tracking via sparsity-based collaborative model
-
W. Zhong, H. Lu, and M.-H. Yang. Robust object tracking via sparsity-based collaborative model. In CVPR, pages 1838-1845, 2012.
-
(2012)
CVPR
, pp. 1838-1845
-
-
Zhong, W.1
Lu, H.2
Yang, M.-H.3
|