-
1
-
-
33845596140
-
Robust fragmentsbased tracking using the integral histogram
-
A. Adam, E. Rivlin, and I. Shimshoni. Robust fragmentsbased tracking using the integral histogram. In CVPR, pages 798-805, 2006.
-
(2006)
CVPR
, pp. 798-805
-
-
Adam, A.1
Rivlin, E.2
Shimshoni, I.3
-
2
-
-
0036475447
-
A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
-
M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2):174-188, 2002.
-
(2002)
IEEE Transactions on Signal Processing
, vol.50
, Issue.2
, pp. 174-188
-
-
Arulampalam, M.1
Maskell, S.2
Gordon, N.3
Clapp, T.4
-
3
-
-
79959527478
-
Robust object tracking with online multiple instance learning
-
B. Babenko, M. Yang, and S. Belongie. Robust object tracking with online multiple instance learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(8):1619-1632, 2011.
-
(2011)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.33
, Issue.8
, pp. 1619-1632
-
-
Babenko, B.1
Yang, M.2
Belongie, S.3
-
4
-
-
84906342881
-
A superior tracking approach: Building a strong tracker through fusion
-
C. Bailer, A. Pagani, and D. Stricker. A superior tracking approach: Building a strong tracker through fusion. In ECCV, pages 170-185. 2014.
-
(2014)
ECCV
, pp. 170-185
-
-
Bailer, C.1
Pagani, A.2
Stricker, D.3
-
5
-
-
77955993278
-
Visual object tracking using adaptive correlation filters
-
D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui. Visual object tracking using adaptive correlation filters. In CVPR, pages 2544-2550, 2010.
-
(2010)
CVPR
, pp. 2544-2550
-
-
Bolme, D.S.1
Beveridge, J.R.2
Draper, B.A.3
Lui, Y.M.4
-
7
-
-
0033682434
-
Real-time tracking of non-rigid objects using mean shift
-
D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking of non-rigid objects using mean shift. In CVPR, pages 142-149, 2000.
-
(2000)
CVPR
, pp. 142-149
-
-
Comaniciu, D.1
Ramesh, V.2
Meer, P.3
-
8
-
-
33645146449
-
Histograms of oriented gradients for human detection
-
N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, pages 886-893, 2005.
-
(2005)
CVPR
, pp. 886-893
-
-
Dalal, N.1
Triggs, B.2
-
10
-
-
84911362613
-
Adaptive color attributes for real-time visual tracking
-
M. Danelljan, F. S. Khan, M. Felsberg, and J. v. d. Weijer. Adaptive color attributes for real-time visual tracking. In CVPR, pages 1090-1097, 2014.
-
(2014)
CVPR
, pp. 1090-1097
-
-
Danelljan, M.1
Khan, F.S.2
Felsberg, M.3
Weijer J, V.D.4
-
11
-
-
84906510679
-
Transfer learning based visual tracking with Gaussian processes regression
-
J. Gao, H. Ling, W. Hu, and J. Xing. Transfer learning based visual tracking with Gaussian processes regression. In ECCV, pages 188-203. 2014.
-
(2014)
ECCV
, pp. 188-203
-
-
Gao, J.1
Ling, H.2
Hu, W.3
Xing, J.4
-
12
-
-
84898020313
-
Real-time tracking via on-line boosting
-
H. Grabner, M. Grabner, and H. Bischof. Real-time tracking via on-line boosting. In BMVC, pages 47-56, 2006.
-
(2006)
BMVC
, pp. 47-56
-
-
Grabner, H.1
Grabner, M.2
Bischof, H.3
-
13
-
-
56749152262
-
Semi-supervised on-line boosting for robust tracking
-
H. Grabner, C. Leistner, and H. Bischof. Semi-supervised on-line boosting for robust tracking. In ECCV, pages 234-247, 2008.
-
(2008)
ECCV
, pp. 234-247
-
-
Grabner, H.1
Leistner, C.2
Bischof, H.3
-
14
-
-
84856659290
-
Struck: Structured output tracking with kernels
-
S. Hare, A. Saffari, and P. H. Torr. Struck: Structured output tracking with kernels. In ICCV, pages 263-270, 2011.
-
(2011)
ICCV
, pp. 263-270
-
-
Hare, S.1
Saffari, A.2
Torr, P.H.3
-
17
-
-
84866725281
-
Visual tracking via adaptive structural local sparse appearance model
-
X. Jia, H. Lu, and M. Yang. Visual tracking via adaptive structural local sparse appearance model. In CVPR, pages 1822-1829, 2012.
-
(2012)
CVPR
, pp. 1822-1829
-
-
Jia, X.1
Lu, H.2
Yang, M.3
-
18
-
-
84996899169
-
The visual object tracking VOT2014 challenge results
-
M. Kristan and et al. The visual object tracking VOT2014 challenge results. In ECCV Workshop, 2014.
-
(2014)
ECCV Workshop
-
-
Kristan, M.1
-
19
-
-
85040145737
-
NUS-PRO: A new visual tracking challenge
-
A. Li, M. Lin, Y. Wu, M.-H. Yang, and S. Yan. NUS-PRO: A new visual tracking challenge. To Appear in IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015.
-
(2015)
IEEE Transactions on Pattern Analysis and Machine Intelligence
-
-
Li, A.1
Lin, M.2
Wu, Y.3
Yang, M.-H.4
Yan, S.5
-
20
-
-
0019647180
-
An iterative image registration technique with an application to stereo vision
-
B. D. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In IJCAI, pages 674-679, 1981.
-
(1981)
IJCAI
, pp. 674-679
-
-
Lucas, B.D.1
Kanade, T.2
-
21
-
-
76749107542
-
Online learning for matrix factorization and sparse coding
-
J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research, 11(1):19-60, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, Issue.1
, pp. 19-60
-
-
Mairal, J.1
Bach, F.2
Ponce, J.3
Sapiro, G.4
-
22
-
-
3042619859
-
The template update problem
-
I. Matthews, T. Ishikawa, and S. Baker. The template update problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(6):810-815, 2004.
-
(2004)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.26
, Issue.6
, pp. 810-815
-
-
Matthews, I.1
Ishikawa, T.2
Baker, S.3
-
23
-
-
85097586621
-
Robust visual tracking using. 11 minimization
-
X. Mei and H. Ling. Robust visual tracking using l1 minimization. In ICCV, pages 1436-1443, 2009.
-
(2009)
ICCV
, pp. 1436-1443
-
-
Mei, X.1
Ling, H.2
-
24
-
-
84898798671
-
Finding the best from the second bestsinhibiting subjective bias in evaluation of visual tracking algorithms
-
Y. Pang and H. Ling. Finding the best from the second bestsinhibiting subjective bias in evaluation of visual tracking algorithms. In ICCV, pages 2784-2791, 2013.
-
(2013)
ICCV
, pp. 2784-2791
-
-
Pang, Y.1
Ling, H.2
-
25
-
-
84959245627
-
In defense of color-based model-free tracking
-
H. Possegger, T. Mauthner, and H. Bischof. In defense of color-based model-free tracking. In CVPR, 2015.
-
(2015)
CVPR
-
-
Possegger, H.1
Mauthner, T.2
Bischof, H.3
-
26
-
-
39749173057
-
Incremental learning for robust visual tracking
-
D. Ross, J. Lim, R. Lin, and M. Yang. Incremental learning for robust visual tracking. International Journal of Computer Vision, 77(1):125-141, 2008.
-
(2008)
International Journal of Computer Vision
, vol.77
, Issue.1
, pp. 125-141
-
-
Ross, D.1
Lim, J.2
Lin, R.3
Yang, M.4
-
27
-
-
77956003979
-
PROST: Parallel robust online simple tracking
-
J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Bischof. PROST: Parallel robust online simple tracking. In CVPR, pages 723-730, 2010.
-
(2010)
CVPR
, pp. 723-730
-
-
Santner, J.1
Leistner, C.2
Saffari, A.3
Pock, T.4
Bischof, H.5
-
28
-
-
84903121415
-
Visual tracking: An experimental survey
-
A. Smeulders, D. Chu, R. Cucchiara, S. Calderara, A. Dehghan, and M. Shah. Visual tracking: An experimental survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(7), 2014.
-
(2014)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.36
, Issue.7
-
-
Smeulders, A.1
Chu, D.2
Cucchiara, R.3
Calderara, S.4
Dehghan, A.5
Shah, M.6
-
29
-
-
84898775168
-
Tracking revisited using RGBD camera: Baseline and benchmark
-
S. Song and J. Xiao. Tracking revisited using RGBD camera: Baseline and benchmark. In ICCV, pages 233-240, 2013.
-
(2013)
ICCV
, pp. 233-240
-
-
Song, S.1
Xiao, J.2
-
30
-
-
84887368146
-
Self-paced learning for longterm tracking
-
J. Supancic and D. Ramanan. Self-paced learning for longterm tracking. In CVPR, pages 2379-2386, 2013.
-
(2013)
CVPR
, pp. 2379-2386
-
-
Supancic, J.1
Ramanan, D.2
-
31
-
-
0003743633
-
-
Technical Report CMU-CS-91-132, School of Computer Science, Carnegie Mellon Univ. Pittsburgh
-
C. Tomasi and T. Kanade. Detection and tracking of point features. Technical Report CMU-CS-91-132, School of Computer Science, Carnegie Mellon Univ. Pittsburgh, 1991.
-
(1991)
Detection and Tracking of Point Features
-
-
Tomasi, C.1
Kanade, T.2
-
32
-
-
0035680116
-
Rapid object detection using a boosted cascade of simple features
-
P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In CVPR, pages 511-518, 2001.
-
(2001)
CVPR
, pp. 511-518
-
-
Viola, P.1
Jones, M.2
-
33
-
-
84885836685
-
Least soft-threshold squares tracking
-
D. Wang, H. Lu, and M.-H. Yang. Least soft-threshold squares tracking. In CVPR, pages 2371-2378, 2013.
-
(2013)
CVPR
, pp. 2371-2378
-
-
Wang, D.1
Lu, H.2
Yang, M.-H.3
-
35
-
-
84898812503
-
Online robust nonnegative dictionary learning for visual tracking
-
N. Wang, J. Wang, and D.-Y. Yeung. Online robust nonnegative dictionary learning for visual tracking. In ICCV, pages 657-664, 2013.
-
(2013)
ICCV
, pp. 657-664
-
-
Wang, N.1
Wang, J.2
Yeung, D.-Y.3
-
36
-
-
84898957022
-
Learning a deep compact image representation for visual tracking
-
N. Wang and D.-Y. Yeung. Learning a deep compact image representation for visual tracking. In NIPS, pages 809-817, 2013.
-
(2013)
NIPS
, pp. 809-817
-
-
Wang, N.1
Yeung, D.-Y.2
-
37
-
-
84919785601
-
Ensemble-based tracking: Aggregating crowdsourced structured time series data
-
N. Wang and D.-Y. Yeung. Ensemble-based tracking: Aggregating crowdsourced structured time series data. In ICML, pages 1107-1115, 2014.
-
(2014)
ICML
, pp. 1107-1115
-
-
Wang, N.1
Yeung, D.-Y.2
-
39
-
-
84887348427
-
Online object tracking: A benchmark
-
Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A benchmark. In CVPR, 2013.
-
(2013)
CVPR
-
-
Wu, Y.1
Lim, J.2
Yang, M.-H.3
-
41
-
-
84898788540
-
Robust object tracking with online multi-lifespan dictionary learning
-
J. Xing, J. Gao, B. Li, W. Hu, and S. Yan. Robust object tracking with online multi-lifespan dictionary learning. In ICCV, pages 665-672, 2013.
-
(2013)
ICCV
, pp. 665-672
-
-
Xing, J.1
Gao, J.2
Li, B.3
Hu, W.4
Yan, S.5
-
42
-
-
84906331169
-
MEEM: Robust tracking via multiple experts using entropy minimization
-
J. Zhang, S. Ma, and S. Sclaroff. MEEM: Robust tracking via multiple experts using entropy minimization. In ECCV, pages 188-203. 2014.
-
(2014)
ECCV
, pp. 188-203
-
-
Zhang, J.1
Ma, S.2
Sclaroff, S.3
-
43
-
-
84866648566
-
Robust object tracking via sparsity-based collaborative model
-
W. Zhong, H. Lu, and M.-H. Yang. Robust object tracking via sparsity-based collaborative model. In CVPR, pages 1838-1845, 2012.
-
(2012)
CVPR
, pp. 1838-1845
-
-
Zhong, W.1
Lu, H.2
Yang, M.-H.3
|