메뉴 건너뛰기




Volumn , Issue , 2014, Pages 2099-2106

Locality in generic instance search from one example

Author keywords

[No Author keywords available]

Indexed keywords

PATTERN RECOGNITION;

EID: 84911404141     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.269     Document Type: Conference Paper
Times cited : (69)

References (35)
  • 1
    • 84866688216 scopus 로고    scopus 로고
    • Measuring the objectness of image windows
    • B. Alexe, T. Deselaers, and V. Ferrari. Measuring the objectness of image windows. TPAMI, 34(11):2189-2202, 2012.
    • (2012) TPAMI , vol.34 , Issue.11 , pp. 2189-2202
    • Alexe, B.1    Deselaers, T.2    Ferrari, V.3
  • 2
    • 84898444333 scopus 로고    scopus 로고
    • Multiple queries for large scale specific object retrieval
    • R. Arandjelovic and A. Zisserman. Multiple queries for large scale specific object retrieval. In BMVC, 2012.
    • (2012) BMVC
    • Arandjelovic, R.1    Zisserman, A.2
  • 3
    • 84866678025 scopus 로고    scopus 로고
    • Three things everyone should know to improve object retrieval
    • R. Arandjelović and A. Zisserman. Three things everyone should know to improve object retrieval. In CVPR, 2012.
    • (2012) CVPR
    • Arandjelović, R.1    Zisserman, A.2
  • 5
    • 84887380771 scopus 로고    scopus 로고
    • Efficient maximum appearance search for large-scale object detection
    • Q. Chen, Z. Song, R. Feris, A. Datta, L. Cao, Z. Huang, and S. Yan. Efficient maximum appearance search for large-scale object detection. In CVPR, 2013.
    • (2013) CVPR
    • Chen, Q.1    Song, Z.2    Feris, R.3    Datta, A.4    Cao, L.5    Huang, Z.6    Yan, S.7
  • 7
    • 50649105215 scopus 로고    scopus 로고
    • Total recall: Automatic query expansion with a generative feature model for object retrieval
    • O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman. Total recall: Automatic query expansion with a generative feature model for object retrieval. In CVPR, 2007.
    • (2007) CVPR
    • Chum, O.1    Philbin, J.2    Sivic, J.3    Isard, M.4    Zisserman, A.5
  • 9
    • 79851509694 scopus 로고    scopus 로고
    • Category independent object proposals
    • I. Endres and D. Hoiem. Category independent object proposals. In ECCV, 2010.
    • (2010) ECCV
    • Endres, I.1    Hoiem, D.2
  • 10
    • 77953202990 scopus 로고    scopus 로고
    • Combining efficient object localization and image classification
    • H. Harzallah, F. Jurie, and C. Schmid. Combining efficient object localization and image classification. In ICCV, 2009.
    • (2009) ICCV
    • Harzallah, H.1    Jurie, F.2    Schmid, C.3
  • 11
    • 70449560133 scopus 로고    scopus 로고
    • Hamming embedding and weak geometric consistency for large scale image search
    • H. Jégou, M. Douze, and C. Schmid. Hamming embedding and weak geometric consistency for large scale image search. In ECCV, 2008.
    • (2008) ECCV
    • Jégou, H.1    Douze, M.2    Schmid, C.3
  • 12
    • 78649317568 scopus 로고    scopus 로고
    • Product quantization for nearest neighbor search
    • H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search. TPAMI, 33(1):117-128, 2011.
    • (2011) TPAMI , vol.33 , Issue.1 , pp. 117-128
    • Jégou, H.1    Douze, M.2    Schmid, C.3
  • 13
    • 84865584175 scopus 로고    scopus 로고
    • Aggregating local image descriptors into compact codes
    • H. Jégou, F. Perronnin, M. Douze, J. Sanchez, P. Perez, and C. Schmid. Aggregating local image descriptors into compact codes. TPAMI, 34(9):1704-1716, 2012.
    • (2012) TPAMI , vol.34 , Issue.9 , pp. 1704-1716
    • Jégou, H.1    Perronnin, F.2    Douze, M.3    Sanchez, J.4    Perez, P.5    Schmid, C.6
  • 14
    • 84866648092 scopus 로고    scopus 로고
    • Randomized visual phrases for object search
    • Y. Jiang, J. Meng, and J. Yuan. Randomized visual phrases for object search. In CVPR, 2012.
    • (2012) CVPR
    • Jiang, Y.1    Meng, J.2    Yuan, J.3
  • 15
    • 72449171018 scopus 로고    scopus 로고
    • Logo retrieval with a contrario visual query expansion
    • A. Joly and O. Buisson. Logo retrieval with a contrario visual query expansion. In MM, 2009.
    • (2009) MM
    • Joly, A.1    Buisson, O.2
  • 16
    • 77953196178 scopus 로고    scopus 로고
    • Detecting objects in large image collections and videos by efficient subimage retrieval
    • C. H. Lampert. Detecting objects in large image collections and videos by efficient subimage retrieval. In ICCV, 2009.
    • (2009) ICCV
    • Lampert, C.H.1
  • 17
    • 80052887007 scopus 로고    scopus 로고
    • A local bag-of-features model for large-scale object retrieval
    • Z. Lin and J. Brandt. A local bag-of-features model for large-scale object retrieval. In ECCV, 2010.
    • (2010) ECCV
    • Lin, Z.1    Brandt, J.2
  • 18
    • 9644260534 scopus 로고    scopus 로고
    • Scale & affine invariant interest point detectors
    • K. Mikolajczyk and C. Schmid. Scale & affine invariant interest point detectors. IJCV, 60(1):63-86, 2004.
    • (2004) IJCV , vol.60 , Issue.1 , pp. 63-86
    • Mikolajczyk, K.1    Schmid, C.2
  • 20
    • 33845592987 scopus 로고    scopus 로고
    • Scalable recognition with a vocabulary tree
    • D. Nistér and H. Stewénius. Scalable recognition with a vocabulary tree. In CVPR, 2006.
    • (2006) CVPR
    • Nistér, D.1    Stewénius, H.2
  • 21
    • 84905274625 scopus 로고    scopus 로고
    • Trecvid 2012-an introduction of the goals, tasks, data, evaluation mechanisms and metrics
    • P. Over, G. Awad, J. Fiscus, G. Sanders, and B. Shaw. Trecvid 2012-an introduction of the goals, tasks, data, evaluation mechanisms and metrics. In TRECVID, 2012.
    • (2012) TRECVID
    • Over, P.1    Awad, G.2    Fiscus, J.3    Sanders, G.4    Shaw, B.5
  • 22
    • 70450179951 scopus 로고    scopus 로고
    • Efficient representation of local geometry for large scale object retrieval
    • M. Perdoch, O. Chum, and J. Matas. Efficient representation of local geometry for large scale object retrieval. In CVPR, 2009.
    • (2009) CVPR
    • Perdoch, M.1    Chum, O.2    Matas, J.3
  • 23
    • 34948815101 scopus 로고    scopus 로고
    • Fisher kernels on visual vocabularies for image categorization
    • F. Perronnin and C. Dance. Fisher kernels on visual vocabularies for image categorization. In CVPR, 2007.
    • (2007) CVPR
    • Perronnin, F.1    Dance, C.2
  • 24
    • 77955992063 scopus 로고    scopus 로고
    • Large-scale image retrieval with compressed fisher vectors
    • F. Perronnin, Y Liu, J. Sanchez, and H. Poirier. Large-scale image retrieval with compressed fisher vectors. In CVPR, 2010.
    • (2010) CVPR
    • Perronnin, F.1    Liu, Y.2    Sanchez, J.3    Poirier, H.4
  • 25
    • 79959771606 scopus 로고    scopus 로고
    • Improving the fisher kernel for large-scale image classification
    • F. Perronnin, J. Sanchez, and T. Mensink. Improving the fisher kernel for large-scale image classification. In ECCV, 2010.
    • (2010) ECCV
    • Perronnin, F.1    Sanchez, J.2    Mensink, T.3
  • 26
    • 34948903793 scopus 로고    scopus 로고
    • Object retrieval with large vocabularies and fast spatial matching
    • J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and fast spatial matching. In CVPR, 2007.
    • (2007) CVPR
    • Philbin, J.1    Chum, O.2    Isard, M.3    Sivic, J.4    Zisserman, A.5
  • 27
    • 51949105132 scopus 로고    scopus 로고
    • Lost in quantization: Improving particular object retrieval in large scale image databases
    • J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Lost in quantization: Improving particular object retrieval in large scale image databases. In CVPR, 2008.
    • (2008) CVPR
    • Philbin, J.1    Chum, O.2    Isard, M.3    Sivic, J.4    Zisserman, A.5
  • 28
    • 80052905439 scopus 로고    scopus 로고
    • Hello neighbor: Accurate object retrieval with k-reciprocal nearest neighbors
    • D. Qin, S. Gammeter, L. Bossard, T. Quack, and L. Van Gool. Hello neighbor: accurate object retrieval with k-reciprocal nearest neighbors. In CVPR, 2011.
    • (2011) CVPR
    • Qin, D.1    Gammeter, S.2    Bossard, L.3    Quack, T.4    Van Gool, L.5
  • 29
    • 84887392826 scopus 로고    scopus 로고
    • Query adaptive similarity for large scale object retrieval
    • D. Qin, C. Wengert, and L. van Gool. Query adaptive similarity for large scale object retrieval. In CVPR, 2013.
    • (2013) CVPR
    • Qin, D.1    Wengert, C.2    Van Gool, L.3
  • 30
    • 84871366150 scopus 로고    scopus 로고
    • Correlation-based burstiness for logo retrieval
    • J. Revaud, M. Douze, and C. Schmid. Correlation-based burstiness for logo retrieval. In MM, 2012.
    • (2012) MM
    • Revaud, J.1    Douze, M.2    Schmid, C.3
  • 31
    • 84883487458 scopus 로고    scopus 로고
    • Image classification with the fisher vector: Theory and practice
    • J. Sanchez, F. Perronnin, T. Mensink, and J. Verbeek. Image classification with the fisher vector: theory and practice. IJCV, 105(3):222-245, 2013.
    • (2013) IJCV , vol.105 , Issue.3 , pp. 222-245
    • Sanchez, J.1    Perronnin, F.2    Mensink, T.3    Verbeek, J.4
  • 32
    • 84898829999 scopus 로고    scopus 로고
    • To aggregate or not to aggregate: Selective match kernels for image search
    • G. Tolias, Y Avrithis, and H. Jégou. To aggregate or not to aggregate: Selective match kernels for image search. In ICCV, 2013.
    • (2013) ICCV
    • Tolias, G.1    Avrithis, Y.2    Jégou, H.3
  • 33
    • 84871358497 scopus 로고    scopus 로고
    • Symcity: Feature selection by symmetry for large scale image retrieval
    • G. Tolias, Y Kalantidis, and Y Avrithis. Symcity: feature selection by symmetry for large scale image retrieval. In MM, 2012.
    • (2012) MM
    • Tolias, G.1    Kalantidis, Y.2    Avrithis, Y.3
  • 34
    • 84855359559 scopus 로고    scopus 로고
    • The visual extent of an object: Suppose we know the object locations
    • J. R. R. Uijlings, A. W. M. Smeulders, and R. J. H. Scha. The visual extent of an object: suppose we know the object locations. IJCV, 96(1):46-63, 2012.
    • (2012) IJCV , vol.96 , Issue.1 , pp. 46-63
    • Uijlings, J.R.R.1    Smeulders, A.W.M.2    Scha, R.J.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.