메뉴 건너뛰기




Volumn 34, Issue 7, 2012, Pages 1312-1328

CPMC: Automatic object segmentation using constrained parametric min-cuts

Author keywords

figure ground segmentation; Image segmentation; learning

Indexed keywords

OBJECT RECOGNITION;

EID: 84861335581     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2011.231     Document Type: Article
Times cited : (566)

References (85)
  • 17
    • 0003217481 scopus 로고
    • Experimental evaluation of techniques for automatic segmentation of objects in a complex scene
    • J. Muerle and D. Allen, "Experimental Evaluation of Techniques for Automatic Segmentation of Objects in a Complex Scene," Proc. Pictorial Pattern Recognition, pp. 3-13, 1968.
    • (1968) Proc. Pictorial Pattern Recognition , pp. 3-13
    • Muerle, J.1    Allen, D.2
  • 19
    • 0029226503 scopus 로고
    • Region competition: Unifying snakes, region growing, energy/bayes/mdl for multi-band image segmentation
    • June
    • S. Zhu, T. Lee, and A. Yuille, "Region Competition: Unifying Snakes, Region Growing, Energy/Bayes/MDL for Multi-Band Image Segmentation," Proc. Fifth Int'l Conf. Computer Vision, pp. 416-423, June 1995.
    • (1995) Proc. Fifth Int'l Conf. Computer Vision , pp. 416-423
    • Zhu, S.1    Lee, T.2    Yuille, A.3
  • 23
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • D. Martin, C. Fowlkes, D. Tal, and J. Malik, "A Database of Human Segmented Natural Images and Its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics," Proc. Eighth IEEE Int'l Conf. Computer Vision, vol. 2, pp. 416-423, July 2001. (Pubitemid 32795086)
    • (2001) Proceedings of the IEEE International Conference on Computer Vision , vol.2 , pp. 416-423
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 26
    • 84898492432 scopus 로고    scopus 로고
    • Improving spatial support for objects via multiple segmentations
    • Sept.
    • T. Malisiewicz and A. Efros, "Improving Spatial Support for Objects via Multiple Segmentations," Proc. British Machine Vision Conf., Sept. 2007.
    • (2007) Proc. British Machine Vision Conf
    • Malisiewicz, T.1    Efros, A.2
  • 27
    • 0036565814 scopus 로고    scopus 로고
    • Mean shift: A robust approach toward feature space analysis
    • DOI 10.1109/34.1000236
    • D. Comaniciu and P. Meer, "Mean Shift: A Robust Approach toward Feature Space Analysis," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp. 603-619, May 2002. (Pubitemid 34550429)
    • (2002) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.24 , Issue.5 , pp. 603-619
    • Comaniciu, D.1    Meer, P.2
  • 29
    • 9644254228 scopus 로고    scopus 로고
    • Efficient graph-based image segmentation
    • Sept.
    • P.F. Felzenszwalb and D.P. Huttenlocher, "Efficient Graph-Based Image Segmentation," Int'l J. Computer Vision, vol. 59, no. 2, pp. 167-181, Sept. 2004.
    • (2004) Int'l J. Computer Vision , vol.59 , Issue.2 , pp. 167-181
    • Felzenszwalb, P.F.1    Huttenlocher, D.P.2
  • 32
    • 33747472134 scopus 로고    scopus 로고
    • Hierarchy and adaptivity in segmenting visual scenes
    • June
    • E. Sharon, M. Galun, D. Sharon, R. Basri, and A. Brandt, "Hierarchy and Adaptivity in Segmenting Visual Scenes," Nature, vol. 442, no. 7104, pp. 719-846, June 2006.
    • (2006) Nature , vol.442 , Issue.7104 , pp. 719-846
    • Sharon, E.1    Galun, M.2    Sharon, D.3    Basri, R.4    Brandt, A.5
  • 35
    • 0024610615 scopus 로고
    • A fast parametric maximum flow algorithm and applications
    • Feb.
    • G. Gallo, M.D. Grigoriadis, and R.E. Tarjan, "A Fast Parametric Maximum Flow Algorithm and Applications," SIAM J. Computing, vol. 18, no. 1, pp. 30-55, Feb. 1989.
    • (1989) SIAM J. Computing , vol.18 , Issue.1 , pp. 30-55
    • Gallo, G.1    Grigoriadis, M.D.2    Tarjan, R.E.3
  • 36
    • 33746427122 scopus 로고    scopus 로고
    • Graph cuts and efficient N-D image segmentation
    • DOI 10.1007/s11263-006-7934-5
    • Y. Boykov and G. Funka-Lea, "Graph Cuts and Efficient n-d Image Segmentation," Int'l J. Computer Vision, vol. 70, no. 2, pp. 109-131, 2006. (Pubitemid 44127252)
    • (2006) International Journal of Computer Vision , vol.70 , Issue.2 , pp. 109-131
    • Boykov, Y.1    Funka-Lea, G.2
  • 37
    • 12844262766 scopus 로고    scopus 로고
    • 'GrabCut': Interactive foreground extraction using iterated graph cuts
    • C. Rother, V. Kolmogorov, and A. Blake, "'GrabCut': Interactive Foreground Extraction Using Iterated Graph Cuts," ACM Trans. Graphics, vol. 23, no. 3, pp. 309-314, 2004.
    • (2004) ACM Trans. Graphics , vol.23 , Issue.3 , pp. 309-314
    • Rother, C.1    Kolmogorov, V.2    Blake, A.3
  • 38
    • 56749180445 scopus 로고    scopus 로고
    • What is a good image segment? a unified approach to segment extraction
    • Oct.
    • S. Bagon, O. Boiman, and M. Irani, "What Is a Good Image Segment? A Unified Approach to Segment Extraction," Proc. 10th European Conf. Computer Vision, pp. 30-44, Oct. 2008.
    • (2008) Proc. 10th European Conf. Computer Vision , pp. 30-44
    • Bagon, S.1    Boiman, O.2    Irani, M.3
  • 39
    • 77953218055 scopus 로고    scopus 로고
    • Curvature regularity for region-based image segmentation and inpainting: A linear programming relaxation
    • T. Schoenemann, F. Kahl, and D. Cremers, "Curvature Regularity for Region-Based Image Segmentation and Inpainting: A Linear Programming Relaxation," Proc. IEEE 12th Int'l Conf. Computer Vision, 2009.
    • (2009) Proc. IEEE 12th Int'l Conf. Computer Vision
    • Schoenemann, T.1    Kahl, F.2    Cremers, D.3
  • 41
    • 0041941135 scopus 로고    scopus 로고
    • Learning affinity functions for image segmentation: Combining patch-based and gradient-based approaches
    • June
    • C. Fowlkes, D. Martin, and J. Malik, "Learning Affinity Functions for Image Segmentation: Combining Patch-Based and Gradient-Based Approaches," Proc. IEEE CS Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 54-61, June 2003.
    • (2003) Proc. IEEE CS Conf. Computer Vision and Pattern Recognition , vol.2 , pp. 54-61
    • Fowlkes, C.1    Martin, D.2    Malik, J.3
  • 44
  • 45
    • 84898407360 scopus 로고    scopus 로고
    • Parameter selection for graph cut based image segmentation
    • Sept.
    • B. Peng and O. Veksler, "Parameter Selection for Graph Cut Based Image Segmentation," Proc. British Machine Vision Conf., Sept. 2008.
    • (2008) Proc. British Machine Vision Conf
    • Peng, B.1    Veksler, O.2
  • 47
    • 51949103544 scopus 로고    scopus 로고
    • Shape priors in variational image segmentation: Convexity, lipschitz continuity and globally optimal solutions
    • June
    • D. Cremers, F.R. Schmidt, and F. Barthel, "Shape Priors in Variational Image Segmentation: Convexity, Lipschitz Continuity and Globally Optimal Solutions," Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 1-6, June 2008.
    • (2008) Proc. IEEE Conf. Computer Vision and Pattern Recognition , pp. 1-6
    • Cremers, D.1    Schmidt, F.R.2    Barthel, F.3
  • 48
  • 50
    • 39749124915 scopus 로고    scopus 로고
    • Robust object detection with interleaved categorization and segmentation
    • B. Leibe, A. Leonardis, and B. Schiele, "Robust Object Detection with Interleaved Categorization and Segmentation," Int'l J. Computer Vision, vol. 77, nos. 1-3, pp. 259-289, 2008.
    • (2008) Int'l J. Computer Vision , vol.77 , Issue.1-3 , pp. 259-289
    • Leibe, B.1    Leonardis, A.2    Schiele, B.3
  • 51
    • 58049184640 scopus 로고    scopus 로고
    • Learning to combine bottom-up and top-down segmentation
    • A. Levin and Y. Weiss, "Learning to Combine Bottom-Up and Top-Down Segmentation," Int'l J. Computer Vision, vol. 81, no. 1, pp. 105-118, 2009.
    • (2009) Int'l J. Computer Vision , vol.81 , Issue.1 , pp. 105-118
    • Levin, A.1    Weiss, Y.2
  • 60
    • 53149130323 scopus 로고    scopus 로고
    • The pseudoflow algorithm: A new algorithm for the maximum-flow problem
    • July
    • D.S. Hochbaum, "The Pseudoflow Algorithm: A New Algorithm for the Maximum-Flow Problem," Operations Research, vol. 56, pp. 992-1009, July 2008.
    • (2008) Operations Research , vol.56 , pp. 992-1009
    • Hochbaum, D.S.1
  • 63
    • 0003131192 scopus 로고
    • Laws of organization in perceptual forms (partial translation)
    • M. Wertheimer, "Laws of Organization in Perceptual Forms (Partial Translation)," Proc. A Sourcebook of Gestalt Psychology, pp. 71-88, 1938.
    • (1938) Proc. A Sourcebook of Gestalt Psychology , pp. 71-88
    • Wertheimer, M.1
  • 66
    • 0033220941 scopus 로고    scopus 로고
    • Embedding gestalt laws in markov random fields
    • Nov.
    • S.-C. Zhu, "Embedding Gestalt Laws in Markov Random Fields," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 21, no. 11, pp. 1170-1187, Nov. 1999.
    • (1999) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.21 , Issue.11 , pp. 1170-1187
    • Zhu, S.-C.1
  • 67
    • 0027697605 scopus 로고
    • An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation
    • Nov.
    • Z. Wu and R. Leahy, "An Optimal Graph Theoretic Approach to Data Clustering: Theory and Its Application to Image Segmentation," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 15, no. 11, pp. 1101-1113, Nov. 1993.
    • (1993) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.15 , Issue.11 , pp. 1101-1113
    • Wu, Z.1    Leahy, R.2
  • 68
    • 0032594951 scopus 로고    scopus 로고
    • Support vector machines for histogram-based image classification
    • Sept.
    • O. Chapelle, P. Haffner, and V. Vapnik, "Support Vector Machines for Histogram-Based Image Classification," IEEE Trans. Neural Networks, vol. 10, no. 5, pp. 1055-1064, Sept. 1999.
    • (1999) IEEE Trans. Neural Networks , vol.10 , Issue.5 , pp. 1055-1064
    • Chapelle, O.1    Haffner, P.2    Vapnik, V.3
  • 70
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • L. Breiman, "Random Forests," Machine Learning, vol. 45, no. 1, pp. 5-32, 2001. (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 73
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D.G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," Int'l J. Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.
    • (2004) Int'l J. Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 81
    • 33744536742 scopus 로고    scopus 로고
    • Parsing images into regions, curves, and curve groups
    • DOI 10.1007/s11263-006-6995-9
    • Z. Tu and S.-C. Zhu, "Parsing Images into Regions, Curves, and Curve Groups," Int'l J. Computer Vision, vol. 69, pp. 223-249, Aug. 2006. (Pubitemid 43814119)
    • (2006) International Journal of Computer Vision , vol.69 , Issue.2 , pp. 223-249
    • Tu, Z.1    Zhu, S.-C.2
  • 83
    • 41549150674 scopus 로고    scopus 로고
    • J. Ponce, M. Hebert, C. Schmid, and A. Zisserman, eds Springer
    • Toward Category-Level Object Recognition, J. Ponce, M. Hebert, C. Schmid, and A. Zisserman, eds. Springer, 2006.
    • (2006) Toward Category-Level Object Recognition


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.