메뉴 건너뛰기




Volumn , Issue , 2013, Pages

Compete to compute

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL NEURAL NETWORKS; CATASTROPHIC FORGETTING; GRADIENT BASED; LINEAR UNITS; TRAINING SETS;

EID: 84898978862     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (198)

References (38)
  • 1
    • 0038346765 scopus 로고
    • Participation of inhibitory and excitatory interneurones in the control of hippocampal cortical output
    • Mary A.B. Brazier, editor, University of California Press, Los Angeles
    • Per Anderson, Gary N. Gross, Terje Lømo, and Ola Sveen. Participation of inhibitory and excitatory interneurones in the control of hippocampal cortical output. In Mary A.B. Brazier, editor, The Interneuron, volume 11. University of California Press, Los Angeles, 1969.
    • (1969) The Interneuron , vol.11
    • Anderson, P.1    Gross, G.N.2    Lømo, T.3    Sveen, O.4
  • 3
    • 0242630292 scopus 로고
    • Interneuronal mechanisms in the cortex
    • Mary A.B. Brazier, editor, University of California Press, Los Angeles
    • Costas Stefanis. Interneuronal mechanisms in the cortex. In Mary A.B. Brazier, editor, The Interneuron, volume 11. University of California Press, Los Angeles, 1969.
    • (1969) The Interneuron , vol.11
    • Stefanis, C.1
  • 4
    • 84961365499 scopus 로고
    • Contour enhancement, short-term memory, and constancies in reverberating neural networks
    • Stephen Grossberg. Contour enhancement, short-term memory, and constancies in reverberating neural networks. Studies in Applied Mathematics, 52:213-257, 1973.
    • (1973) Studies in Applied Mathematics , vol.52 , pp. 213-257
    • Grossberg, S.1
  • 5
    • 77957064197 scopus 로고
    • Catastrophic interference in connectionist networks: The sequential learning problem
    • Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The sequential learning problem. The Psychology of Learning and Motivation, 24:109-164, 1989.
    • (1989) The Psychology of Learning and Motivation , vol.24 , pp. 109-164
    • McCloskey, M.1    Cohen, N.J.2
  • 6
    • 0023981451 scopus 로고
    • The art of adaptive pattern recognition by a self-organising neural network
    • Gail A. Carpenter and Stephen Grossberg. The art of adaptive pattern recognition by a self-organising neural network. Computer, 21(3):77-88, 1988.
    • (1988) Computer , vol.21 , Issue.3 , pp. 77-88
    • Carpenter, G.A.1    Grossberg, S.2
  • 7
    • 0003588579 scopus 로고
    • PhD thesis, Department of Computer Sciences, The University of Texas at Austin, Austin, Texas 78712, August
    • Mark B. Ring. Continual Learning in Reinforcement Environments. PhD thesis, Department of Computer Sciences, The University of Texas at Austin, Austin, Texas 78712, August 1994.
    • (1994) Continual Learning in Reinforcement Environments
    • Ring, M.B.1
  • 8
    • 0016737517 scopus 로고
    • Pattern formation, contrast control, and oscillations in the short term memory of shunting on-center off-surround networks
    • Samuel A. Ellias and Stephen Grossberg. Pattern formation, contrast control, and oscillations in the short term memory of shunting on-center off-surround networks. Bio. Cybernetics, 1975.
    • (1975) Bio. Cybernetics
    • Ellias, S.A.1    Grossberg, S.2
  • 9
    • 0026678711 scopus 로고
    • Complex dynamics in winner-take-all neural nets with slow inhibition
    • Brad Ermentrout. Complex dynamics in winner-take-all neural nets with slow inhibition. Neural Networks, 5(1):415-431, 1992.
    • (1992) Neural Networks , vol.5 , Issue.1 , pp. 415-431
    • Ermentrout, B.1
  • 10
    • 0015749493 scopus 로고
    • Self-organization of orientation sensitive cells in the striate cortex
    • December
    • Christoph von der Malsburg. Self-organization of orientation sensitive cells in the striate cortex. Kybernetik, 14(2):85-100, December 1973.
    • (1973) Kybernetik , vol.14 , Issue.2 , pp. 85-100
    • Von Der Malsburg, C.1
  • 11
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Teuvo Kohonen. Self-organized formation of topologically correct feature maps. Biological cybernetics, 43(1):59-69, 1982.
    • (1982) Biological Cybernetics , vol.43 , Issue.1 , pp. 59-69
    • Kohonen, T.1
  • 13
    • 0033360355 scopus 로고    scopus 로고
    • Attention activates winner-takeall competition among visual filters
    • April
    • Dale K. Lee, Laurent Itti, Christof Koch, and Jochen Braun. Attention activates winner-takeall competition among visual filters. Nature Neuroscience, 2(4):375-81, April 1999.
    • (1999) Nature Neuroscience , vol.2 , Issue.4 , pp. 375-381
    • Lee, D.K.1    Itti, L.2    Koch, C.3    Braun, J.4
  • 14
    • 84898947886 scopus 로고    scopus 로고
    • Spiking inputs to a winner-take-all network
    • MIT;
    • Matthias Oster and Shih-Chii Liu. Spiking inputs to a winner-take-all network. In Proceedings of NIPS, volume 18. MIT; 1998, 2006.
    • (1998) Proceedings of NIPS , vol.18 , pp. 2006
    • Oster, M.1    Liu, S.2
  • 16
    • 0034576069 scopus 로고    scopus 로고
    • Modeling selective attention using a neuromorphic analog VLSI device
    • Giacomo Indiveri. Modeling selective attention using a neuromorphic analog VLSI device. Neural Computation, 12(12):2857-2880, 2000.
    • (2000) Neural Computation , vol.12 , Issue.12 , pp. 2857-2880
    • Indiveri, G.1
  • 17
    • 0347191165 scopus 로고    scopus 로고
    • Neural computation with winner-take-all as the only nonlinear operation
    • Wolfgang Maass. Neural computation with winner-take-all as the only nonlinear operation. In Proceedings of NIPS, volume 12, 1999.
    • (1999) Proceedings of NIPS , vol.12
    • Maass, W.1
  • 18
    • 0034321873 scopus 로고    scopus 로고
    • On the computational power of winner-take-all
    • Wolfgang Maass. On the computational power of winner-take-all. Neural Computation, 12:2519-2535, 2000.
    • (2000) Neural Computation , vol.12 , pp. 2519-2535
    • Maass, W.1
  • 21
    • 0001623105 scopus 로고
    • A local learning algorithm for dynamic feedforward and recurrent networks
    • Juergen Schmidhuber. A local learning algorithm for dynamic feedforward and recurrent networks. Connection Science, 1(4):403-412, 1989.
    • (1989) Connection Science , vol.1 , Issue.4 , pp. 403-412
    • Schmidhuber, J.1
  • 23
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchical models of object recognition in cortex
    • Maximillian Riesenhuber and Tomaso Poggio. Hierarchical models of object recognition in cortex. Nature Neuroscience, 2(11), 1999.
    • (1999) Nature Neuroscience , vol.2 , pp. 11
    • Riesenhuber, M.1    Poggio, T.2
  • 24
    • 84878919540 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Alex Krizhevsky, Ilya Sutskever, and Goeffrey E. Hinton. Imagenet classification with deep convolutional neural networks. In Proceedings of NIPS, pages 1-9, 2012.
    • Proceedings of NIPS , vol.2012 , pp. 1-9
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 26
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted boltzmann machines
    • Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines. In Proceedings of the ICML, number 3, 2010.
    • (2010) Proceedings of the ICML , Issue.3
    • Nair, V.1    Hinton, G.E.2
  • 27
    • 84862294866 scopus 로고    scopus 로고
    • Deep sparse rectifier networks
    • Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier networks. In AISTATS, volume 15, pages 315-323, 2011.
    • (2011) Aistats , vol.15 , pp. 315-323
    • Glorot, X.1    Bordes, A.2    Bengio, Y.3
  • 28
    • 84890527827 scopus 로고    scopus 로고
    • Improving deep neural networks for LVCSR using rectified linear units and dropout
    • George E. Dahl, Tara N. Sainath, and Geoffrey E. Hinton. Improving Deep Neural Networks for LVCSR using Rectified Linear Units and Dropout. In Proceedings of ICASSP, 2013.
    • (2013) Proceedings of ICASSP
    • Dahl, G.E.1    Sainath, T.N.2    Hinton, G.E.3
  • 29
    • 84893676344 scopus 로고    scopus 로고
    • Rectifier nonlinearities improve neural network acoustic models
    • Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the ICML, 2013.
    • (2013) Proceedings of the ICML
    • Maas, A.L.1    Hannun, A.Y.2    Ng, A.Y.3
  • 34
    • 84864069017 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • Marc'Aurelio Ranzato, Christopher Poultney, Sumit Chopra, and Yann LeCun. Efficient learning of sparse representations with an energy-based model. In Proceedings of NIPS, 2007.
    • (2007) Proceedings of NIPS
    • Ranzato, M.A.1    Poultney, C.2    Chopra, S.3    LeCun, Y.4
  • 35
    • 85083954484 scopus 로고    scopus 로고
    • Stochastic pooling for regularization of deep convolutional neural networks
    • Matthew D. Zeiler and Rob Fergus. Stochastic pooling for regularization of deep convolutional neural networks. In Proceedings of the ICLR, 2013.
    • (2013) Proceedings of the ICLR
    • Zeiler, M.D.1    Fergus, R.2
  • 36
    • 77953183471 scopus 로고    scopus 로고
    • What is the best multi-stage architecture for object recognition?
    • Kevin Jarrett, Koray Kavukcuoglu, Marc'Aurelio Ranzato, and Yann LeCun. What is the best multi-stage architecture for object recognition? In Proc. of the ICCV, pages 2146-2153, 2009.
    • (2009) Proc. of the ICCV , pp. 2146-2153
    • Jarrett, K.1    Kavukcuoglu, K.2    Aurelio Ranzato, M.3    Lecun, Y.4
  • 37
    • 84860524227 scopus 로고    scopus 로고
    • Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification
    • John Blitzer, Mark Dredze, and Fernando Pereira. Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. Annual Meeting-ACL, 2007.
    • (2007) Annual Meeting-ACL
    • Blitzer, J.1    Dredze, M.2    Pereira, F.3
  • 38
    • 80053443013 scopus 로고    scopus 로고
    • Domain adaptation for large-scale sentiment classification: A deep learning approach
    • Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain adaptation for large-scale sentiment classification: A deep learning approach. In Proceedings of the ICML, number 1, 2011.
    • (2011) Proceedings of the ICML , Issue.1
    • Glorot, X.1    Bordes, A.2    Bengio, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.