-
1
-
-
78751697032
-
Locality preserving nonnegative matrix factorization
-
D. Cai, X. He, X. Wang, H. Bao, and J. Han. Locality preserving nonnegative matrix factorization. In IJCAI, volume 9, pages 1010-1015, 2009.
-
(2009)
IJCAI
, vol.9
, pp. 1010-1015
-
-
Cai, D.1
He, X.2
Wang, X.3
Bao, H.4
Han, J.5
-
3
-
-
84933282749
-
Large scale spectral clustering with landmark-based representation
-
X. Chen and D. Cai. Large scale spectral clustering with landmark-based representation. In AAAI, 2011.
-
(2011)
AAAI
-
-
Chen, X.1
Cai, D.2
-
4
-
-
85162494200
-
Selecting receptive fields in deep networks
-
A. Coates and A. Y. Ng. Selecting receptive fields in deep networks. In NIPS, pages 2528-2536, 2011.
-
(2011)
NIPS
, pp. 2528-2536
-
-
Coates, A.1
Ng, A.Y.2
-
6
-
-
34249753618
-
Support-vector networks
-
C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
8
-
-
84871617105
-
Convex and semi-nonnegative matrix factorizations
-
C. Ding, T. Li, M. Jordan, et al. Convex and semi-nonnegative matrix factorizations. IEEE TPAMI, 32(1):45-55, 2010.
-
(2010)
IEEE TPAMI
, vol.32
, Issue.1
, pp. 45-55
-
-
Ding, C.1
Li, T.2
Jordan, M.3
-
9
-
-
84898936638
-
Mid-level visual element discovery as discriminative mode seeking
-
C. Doersch, A. Gupta, and A. A. Efros. Mid-level visual element discovery as discriminative mode seeking. In NIPS, pages 494-502, 2013.
-
(2013)
NIPS
, pp. 494-502
-
-
Doersch, C.1
Gupta, A.2
Efros, A.A.3
-
10
-
-
84973916088
-
Unsupervised visual representation learning by context prediction
-
C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context prediction. In ICCV, pages 1422-1430, 2015.
-
(2015)
ICCV
, pp. 1422-1430
-
-
Doersch, C.1
Gupta, A.2
Efros, A.A.3
-
11
-
-
84937964776
-
Discriminative unsupervised feature learning with convolutional neural networks
-
A. Dosovitskiy, J. T. Springenberg, M. Riedmiller, and T. Brox. Discriminative unsupervised feature learning with convolutional neural networks. In NIPS, pages 766-774, 2014.
-
(2014)
NIPS
, pp. 766-774
-
-
Dosovitskiy, A.1
Springenberg, J.T.2
Riedmiller, M.3
Brox, T.4
-
12
-
-
0035481858
-
Selforganization in vision: Stochastic clustering for image segmentation, perceptual grouping, and image database organization
-
Y. Gdalyahu, D. Weinshall, and M. Werman. Selforganization in vision: stochastic clustering for image segmentation, perceptual grouping, and image database organization. IEEE TPAMI, 23(10):1053-1074, 2001.
-
(2001)
IEEE TPAMI
, vol.23
, Issue.10
, pp. 1053-1074
-
-
Gdalyahu, Y.1
Weinshall, D.2
Werman, M.3
-
13
-
-
84964588182
-
Fast r-cnn
-
R. Girshick. Fast r-cnn. In ICCV, pages 1440-1448, 2015.
-
(2015)
ICCV
, pp. 1440-1448
-
-
Girshick, R.1
-
14
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
IEEE
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, pages 580-587. IEEE, 2014.
-
(2014)
CVPR
, pp. 580-587
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
16
-
-
0018183618
-
Agglomerative clustering using the concept of mutual nearest neighbourhood
-
K. C. Gowda and G. Krishna. Agglomerative clustering using the concept of mutual nearest neighbourhood. Pattern recognition, 10(2):105-112, 1978.
-
(1978)
Pattern Recognition
, vol.10
, Issue.2
, pp. 105-112
-
-
Gowda, K.C.1
Krishna, G.2
-
17
-
-
0001576029
-
Characterising virtual eigensignatures for general purpose face recognition
-
Springer
-
D. B. Graham and N. M. Allinson. Characterising virtual eigensignatures for general purpose face recognition. In Face Recognition, pages 446-456. Springer, 1998.
-
(1998)
Face Recognition
, pp. 446-456
-
-
Graham, D.B.1
Allinson, N.M.2
-
18
-
-
84959239518
-
Unsupervised simultaneous orthogonal basis clustering feature selection
-
D. Han and J. Kim. Unsupervised simultaneous orthogonal basis clustering feature selection. In IEEE CVPR, pages 5016-5023, 2015.
-
(2015)
IEEE CVPR
, pp. 5016-5023
-
-
Han, D.1
Kim, J.2
-
19
-
-
84867855773
-
Discriminative decorrelation for clustering and classification
-
Springer
-
B. Hariharan, J. Malik, and D. Ramanan. Discriminative decorrelation for clustering and classification. In ECCV, pages 459-472. Springer, 2012.
-
(2012)
ECCV
, pp. 459-472
-
-
Hariharan, B.1
Malik, J.2
Ramanan, D.3
-
20
-
-
84906508687
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
Springer
-
K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, pages 346-361. Springer, 2014.
-
(2014)
ECCV
, pp. 346-361
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
21
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
22
-
-
85009897667
-
Labeled faces in the wild: A database for studying face recognition in unconstrained environments
-
University of Massachusetts, Amherst
-
G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical report, Technical Report 07-49, University of Massachusetts, Amherst, 2007.
-
(2007)
Technical Report, Technical Report
, pp. 07-49
-
-
Huang, G.B.1
Ramesh, M.2
Berg, T.3
Learned-Miller, E.4
-
23
-
-
84866713490
-
Affinity aggregation for spectral clustering
-
IEEE
-
H.-C. Huang, Y.-Y. Chuang, and C.-S. Chen. Affinity aggregation for spectral clustering. In CVPR, pages 773-780. IEEE, 2012.
-
(2012)
CVPR
, pp. 773-780
-
-
Huang, H.-C.1
Chuang, Y.-Y.2
Chen, C.-S.3
-
24
-
-
84893405732
-
Data clustering: A review
-
A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM computing surveys (CSUR), 31(3):264-323, 1999.
-
(1999)
ACM Computing Surveys (CSUR)
, vol.31
, Issue.3
, pp. 264-323
-
-
Jain, A.K.1
Murty, M.N.2
Flynn, P.J.3
-
25
-
-
84866666373
-
Beyond spatial pyramids: Receptive field learning for pooled image features
-
IEEE
-
Y. Jia, C. Huang, and T. Darrell. Beyond spatial pyramids: Receptive field learning for pooled image features. In CVPR, pages 3370-3377. IEEE, 2012.
-
(2012)
CVPR
, pp. 3370-3377
-
-
Jia, Y.1
Huang, C.2
Darrell, T.3
-
26
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
ACM
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the ACM International Conference on Multimedia, pages 675-678. ACM, 2014.
-
(2014)
Proceedings of the ACM International Conference on Multimedia
, pp. 675-678
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
28
-
-
84887042736
-
Using very deep autoencoders for content-based image retrieval
-
Citeseer
-
A. Krizhevsky and G. E. Hinton. Using very deep autoencoders for content-based image retrieval. In ESANN. Citeseer, 2011.
-
(2011)
ESANN
-
-
Krizhevsky, A.1
Hinton, G.E.2
-
29
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1097-1105, 2012.
-
(2012)
NIPS
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
30
-
-
0025919961
-
An efficient agglomerative clustering algorithm using a heap
-
T. Kurita. An efficient agglomerative clustering algorithm using a heap. Pattern Recognition, 24(3):205-209, 1991.
-
(1991)
Pattern Recognition
, vol.24
, Issue.3
, pp. 205-209
-
-
Kurita, T.1
-
31
-
-
84890478042
-
Building high-level features using large scale unsupervised learning
-
IEEE
-
Q. V. Le. Building high-level features using large scale unsupervised learning. In ICASSP, pages 8595-8598. IEEE, 2013.
-
(2013)
ICASSP
, pp. 8595-8598
-
-
Le, Q.V.1
-
32
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
33
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
ACM
-
H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML, pages 609-616. ACM, 2009.
-
(2009)
ICML
, pp. 609-616
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
34
-
-
84919800661
-
Stable and efficient representation learning with nonnegativity constraints
-
T.-H. Lin and H. Kung. Stable and efficient representation learning with nonnegativity constraints. In ICML, pages 1323-1331, 2014.
-
(2014)
ICML
, pp. 1323-1331
-
-
Lin, T.-H.1
Kung, H.2
-
35
-
-
0033284915
-
Object recognition from local scaleinvariant features
-
IEEE
-
D. G. Lowe. Object recognition from local scaleinvariant features. In ICCV, volume 2, pages 1150-1157. IEEE, 1999.
-
(1999)
ICCV
, vol.2
, pp. 1150-1157
-
-
Lowe, D.G.1
-
36
-
-
0001457509
-
Some methods for classification and analysis of multivariate observations
-
Oakland, CA, USA.
-
J. MacQueen et al. Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1, pages 281-297. Oakland, CA, USA., 1967.
-
(1967)
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability
, vol.1
, pp. 281-297
-
-
MacQueen, J.1
-
38
-
-
21944443104
-
A universal density profile from hierarchical clustering
-
J. F. Navarro, C. S. Frenk, and S. D. White. A universal density profile from hierarchical clustering. The Astrophysical Journal, 490(2):493, 1997.
-
(1997)
The Astrophysical Journal
, vol.490
, Issue.2
, pp. 493
-
-
Navarro, J.F.1
Frenk, C.S.2
White, S.D.3
-
39
-
-
0003840341
-
Columbia object image library (coil-20)
-
S. A. Nene, S. K. Nayar, H. Murase, et al. Columbia object image library (coil-20). Technical report, Technical Report CUCS-005-96, 1996.
-
(1996)
Technical Report, Technical Report CUCS
, pp. 005-96
-
-
Nene, S.A.1
Nayar, S.K.2
Murase, H.3
-
40
-
-
84899013108
-
On spectral clustering: Analysis and an algorithm
-
A. Y. Ng, M. I. Jordan, Y. Weiss, et al. On spectral clustering: Analysis and an algorithm. NIPS, 2:849-856, 2002.
-
(2002)
NIPS
, vol.2
, pp. 849-856
-
-
Ng, A.Y.1
Jordan, M.I.2
Weiss, Y.3
-
41
-
-
34948870900
-
Unsupervised learning of invariant feature hierarchies with applications to object recognition
-
IEEE
-
M. A. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. Le-Cun. Unsupervised learning of invariant feature hierarchies with applications to object recognition. In CVPR, pages 1-8. IEEE, 2007.
-
(2007)
CVPR
, pp. 1-8
-
-
Ranzato, M.A.1
Huang, F.J.2
Boureau, Y.-L.3
Le-Cun, Y.4
-
42
-
-
84959250728
-
Dataset fingerprints: Exploring image collections through data mining
-
K. Rematas, B. Fernando, F. Dellaert, and T. Tuytelaars. Dataset fingerprints: Exploring image collections through data mining. In IEEE CVPR, pages 4867-4875, 2015.
-
(2015)
IEEE CVPR
, pp. 4867-4875
-
-
Rematas, K.1
Fernando, B.2
Dellaert, F.3
Tuytelaars, T.4
-
43
-
-
84960980241
-
Faster r-cnn: Towards real-time object detection with region proposal networks
-
S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In NIPS, pages 91-99, 2015.
-
(2015)
NIPS
, pp. 91-99
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
-
44
-
-
84945944033
-
Imagenet large scale visual recognition challenge
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. IJCV, pages 1-42, 2014.
-
(2014)
IJCV
, pp. 1-42
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
-
45
-
-
84946751287
-
Facenet: A unified embedding for face recognition and clustering
-
F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition and clustering. In CVPR, pages 815-823, 2015.
-
(2015)
CVPR
, pp. 815-823
-
-
Schroff, F.1
Kalenichenko, D.2
Philbin, J.3
-
46
-
-
84925321058
-
-
arXiv preprint arXiv
-
P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229, 2013.
-
(2013)
Overfeat: Integrated Recognition, Localization and Detection Using Convolutional Networks
, vol.1312
, pp. 6229
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
LeCun, Y.6
-
47
-
-
0034244751
-
Normalized cuts and image segmentation
-
J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE TPAMI, 22(8):888-905, 2000.
-
(2000)
IEEE TPAMI
, vol.22
, Issue.8
, pp. 888-905
-
-
Shi, J.1
Malik, J.2
-
48
-
-
4544292940
-
The cmu pose, illumination, and expression (pie) database
-
IEEE
-
T. Sim, S. Baker, and M. Bsat. The cmu pose, illumination, and expression (pie) database. In FG, pages 46-51. IEEE, 2002.
-
(2002)
FG
, pp. 46-51
-
-
Sim, T.1
Baker, S.2
Bsat, M.3
-
50
-
-
84867880615
-
Unsupervised discovery of mid-level discriminative patches
-
S. Singh, A. Gupta, and A. Efros. Unsupervised discovery of mid-level discriminative patches. ECCV, pages 73-86, 2012.
-
(2012)
ECCV
, pp. 73-86
-
-
Singh, S.1
Gupta, A.2
Efros, A.3
-
51
-
-
84908218622
-
Learning deep representations for graph clustering
-
F. Tian, B. Gao, Q. Cui, E. Chen, and T.-Y. Liu. Learning deep representations for graph clustering. In AAAI, pages 1293-1299, 2014.
-
(2014)
AAAI
, pp. 1293-1299
-
-
Tian, F.1
Gao, B.2
Cui, Q.3
Chen, E.4
Liu, T.-Y.5
-
52
-
-
84919833428
-
A deep semi-nmf model for learning hidden representations
-
G. Trigeorgis, K. Bousmalis, S. Zafeiriou, and B. Schuller. A deep semi-nmf model for learning hidden representations. In ICML, pages 1692-1700, 2014.
-
(2014)
ICML
, pp. 1692-1700
-
-
Trigeorgis, G.1
Bousmalis, K.2
Zafeiriou, S.3
Schuller, B.4
-
53
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
ACM
-
P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with denoising autoencoders. In ICML, pages 1096-1103. ACM, 2008.
-
(2008)
ICML
, pp. 1096-1103
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
-
54
-
-
84911376543
-
Learning fine-grained image similarity with deep ranking
-
IEEE
-
J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin, B. Chen, and Y. Wu. Learning fine-grained image similarity with deep ranking. In CVPR, pages 1386-1393. IEEE, 2014.
-
(2014)
CVPR
, pp. 1386-1393
-
-
Wang, J.1
Song, Y.2
Leung, T.3
Rosenberg, C.4
Wang, J.5
Philbin, J.6
Chen, B.7
Wu, Y.8
-
55
-
-
84973889989
-
Unsupervised learning of visual representations using videos
-
X. Wang and A. Gupta. Unsupervised learning of visual representations using videos. In ICCV, pages 2794-2802, 2015.
-
(2015)
ICCV
, pp. 2794-2802
-
-
Wang, X.1
Gupta, A.2
-
56
-
-
85009835535
-
-
arXiv preprint arXiv
-
Z. Wang, S. Chang, J. Zhou, and T. S. Huang. Learning a task-specific deep architecture for clustering. In arXiv preprint arXiv:1509.00151, 2015.
-
(2015)
Learning A Task-specific Deep Architecture for Clustering
, vol.1509
, pp. 00151
-
-
Wang, Z.1
Chang, S.2
Zhou, J.3
Huang, T.S.4
-
57
-
-
80052899838
-
Face recognition in unconstrained videos with matched background similarity
-
IEEE
-
L. Wolf, T. Hassner, and I. Maoz. Face recognition in unconstrained videos with matched background similarity. In CVPR, pages 529-534. IEEE, 2011.
-
(2011)
CVPR
, pp. 529-534
-
-
Wolf, L.1
Hassner, T.2
Maoz, I.3
-
58
-
-
85009856931
-
Integrating image clustering and codebook learning
-
P. Xie and E. Xing. Integrating image clustering and codebook learning. In AAAI, 2015.
-
(2015)
AAAI
-
-
Xie, P.1
Xing, E.2
-
60
-
-
77949767628
-
Nonlinear nonnegative component analysis algorithms
-
S. Zafeiriou and M. Petrou. Nonlinear nonnegative component analysis algorithms. IEEE TIP, 19(4):1050-1066, 2010.
-
(2010)
IEEE TIP
, vol.19
, Issue.4
, pp. 1050-1066
-
-
Zafeiriou, S.1
Petrou, M.2
-
61
-
-
33644783522
-
Self-tuning spectral clustering
-
L. Zelnik-Manor and P. Perona. Self-tuning spectral clustering. In NIPS, pages 1601-1608, 2004.
-
(2004)
NIPS
, pp. 1601-1608
-
-
Zelnik-Manor, L.1
Perona, P.2
-
62
-
-
84867861862
-
Graph degree linkage: Agglomerative clustering on a directed graph
-
Springer
-
W. Zhang, X.Wang, D. Zhao, and X. Tang. Graph degree linkage: Agglomerative clustering on a directed graph. In ECCV, pages 428-441. Springer, 2012.
-
(2012)
ECCV
, pp. 428-441
-
-
Zhang, W.1
Wang, X.2
Zhao, D.3
Tang, X.4
-
63
-
-
84878847284
-
Agglomerative clustering via maximum incremental path integral
-
W. Zhang, D. Zhao, and X. Wang. Agglomerative clustering via maximum incremental path integral. Pattern Recognition, 46(11):3056-3065, 2013.
-
(2013)
Pattern Recognition
, vol.46
, Issue.11
, pp. 3056-3065
-
-
Zhang, W.1
Zhao, D.2
Wang, X.3
-
64
-
-
84858780238
-
Cyclizing clusters via zeta function of a graph
-
D. Zhao and X. Tang. Cyclizing clusters via zeta function of a graph. In NIPS, pages 1953-1960, 2009.
-
(2009)
NIPS
, pp. 1953-1960
-
-
Zhao, D.1
Tang, X.2
|