메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 5147-5156

Joint unsupervised learning of deep representations and image clusters

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; NEURAL NETWORKS; PATTERN RECOGNITION; UNSUPERVISED LEARNING;

EID: 84986281587     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.556     Document Type: Conference Paper
Times cited : (974)

References (64)
  • 1
    • 78751697032 scopus 로고    scopus 로고
    • Locality preserving nonnegative matrix factorization
    • D. Cai, X. He, X. Wang, H. Bao, and J. Han. Locality preserving nonnegative matrix factorization. In IJCAI, volume 9, pages 1010-1015, 2009.
    • (2009) IJCAI , vol.9 , pp. 1010-1015
    • Cai, D.1    He, X.2    Wang, X.3    Bao, H.4    Han, J.5
  • 3
    • 84933282749 scopus 로고    scopus 로고
    • Large scale spectral clustering with landmark-based representation
    • X. Chen and D. Cai. Large scale spectral clustering with landmark-based representation. In AAAI, 2011.
    • (2011) AAAI
    • Chen, X.1    Cai, D.2
  • 4
    • 85162494200 scopus 로고    scopus 로고
    • Selecting receptive fields in deep networks
    • A. Coates and A. Y. Ng. Selecting receptive fields in deep networks. In NIPS, pages 2528-2536, 2011.
    • (2011) NIPS , pp. 2528-2536
    • Coates, A.1    Ng, A.Y.2
  • 6
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273-297, 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 8
    • 84871617105 scopus 로고    scopus 로고
    • Convex and semi-nonnegative matrix factorizations
    • C. Ding, T. Li, M. Jordan, et al. Convex and semi-nonnegative matrix factorizations. IEEE TPAMI, 32(1):45-55, 2010.
    • (2010) IEEE TPAMI , vol.32 , Issue.1 , pp. 45-55
    • Ding, C.1    Li, T.2    Jordan, M.3
  • 9
    • 84898936638 scopus 로고    scopus 로고
    • Mid-level visual element discovery as discriminative mode seeking
    • C. Doersch, A. Gupta, and A. A. Efros. Mid-level visual element discovery as discriminative mode seeking. In NIPS, pages 494-502, 2013.
    • (2013) NIPS , pp. 494-502
    • Doersch, C.1    Gupta, A.2    Efros, A.A.3
  • 10
    • 84973916088 scopus 로고    scopus 로고
    • Unsupervised visual representation learning by context prediction
    • C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context prediction. In ICCV, pages 1422-1430, 2015.
    • (2015) ICCV , pp. 1422-1430
    • Doersch, C.1    Gupta, A.2    Efros, A.A.3
  • 11
    • 84937964776 scopus 로고    scopus 로고
    • Discriminative unsupervised feature learning with convolutional neural networks
    • A. Dosovitskiy, J. T. Springenberg, M. Riedmiller, and T. Brox. Discriminative unsupervised feature learning with convolutional neural networks. In NIPS, pages 766-774, 2014.
    • (2014) NIPS , pp. 766-774
    • Dosovitskiy, A.1    Springenberg, J.T.2    Riedmiller, M.3    Brox, T.4
  • 12
    • 0035481858 scopus 로고    scopus 로고
    • Selforganization in vision: Stochastic clustering for image segmentation, perceptual grouping, and image database organization
    • Y. Gdalyahu, D. Weinshall, and M. Werman. Selforganization in vision: stochastic clustering for image segmentation, perceptual grouping, and image database organization. IEEE TPAMI, 23(10):1053-1074, 2001.
    • (2001) IEEE TPAMI , vol.23 , Issue.10 , pp. 1053-1074
    • Gdalyahu, Y.1    Weinshall, D.2    Werman, M.3
  • 13
    • 84964588182 scopus 로고    scopus 로고
    • Fast r-cnn
    • R. Girshick. Fast r-cnn. In ICCV, pages 1440-1448, 2015.
    • (2015) ICCV , pp. 1440-1448
    • Girshick, R.1
  • 14
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • IEEE
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, pages 580-587. IEEE, 2014.
    • (2014) CVPR , pp. 580-587
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 16
    • 0018183618 scopus 로고
    • Agglomerative clustering using the concept of mutual nearest neighbourhood
    • K. C. Gowda and G. Krishna. Agglomerative clustering using the concept of mutual nearest neighbourhood. Pattern recognition, 10(2):105-112, 1978.
    • (1978) Pattern Recognition , vol.10 , Issue.2 , pp. 105-112
    • Gowda, K.C.1    Krishna, G.2
  • 17
    • 0001576029 scopus 로고    scopus 로고
    • Characterising virtual eigensignatures for general purpose face recognition
    • Springer
    • D. B. Graham and N. M. Allinson. Characterising virtual eigensignatures for general purpose face recognition. In Face Recognition, pages 446-456. Springer, 1998.
    • (1998) Face Recognition , pp. 446-456
    • Graham, D.B.1    Allinson, N.M.2
  • 18
    • 84959239518 scopus 로고    scopus 로고
    • Unsupervised simultaneous orthogonal basis clustering feature selection
    • D. Han and J. Kim. Unsupervised simultaneous orthogonal basis clustering feature selection. In IEEE CVPR, pages 5016-5023, 2015.
    • (2015) IEEE CVPR , pp. 5016-5023
    • Han, D.1    Kim, J.2
  • 19
    • 84867855773 scopus 로고    scopus 로고
    • Discriminative decorrelation for clustering and classification
    • Springer
    • B. Hariharan, J. Malik, and D. Ramanan. Discriminative decorrelation for clustering and classification. In ECCV, pages 459-472. Springer, 2012.
    • (2012) ECCV , pp. 459-472
    • Hariharan, B.1    Malik, J.2    Ramanan, D.3
  • 20
    • 84906508687 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • Springer
    • K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, pages 346-361. Springer, 2014.
    • (2014) ECCV , pp. 346-361
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 21
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 22
    • 85009897667 scopus 로고    scopus 로고
    • Labeled faces in the wild: A database for studying face recognition in unconstrained environments
    • University of Massachusetts, Amherst
    • G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical report, Technical Report 07-49, University of Massachusetts, Amherst, 2007.
    • (2007) Technical Report, Technical Report , pp. 07-49
    • Huang, G.B.1    Ramesh, M.2    Berg, T.3    Learned-Miller, E.4
  • 23
    • 84866713490 scopus 로고    scopus 로고
    • Affinity aggregation for spectral clustering
    • IEEE
    • H.-C. Huang, Y.-Y. Chuang, and C.-S. Chen. Affinity aggregation for spectral clustering. In CVPR, pages 773-780. IEEE, 2012.
    • (2012) CVPR , pp. 773-780
    • Huang, H.-C.1    Chuang, Y.-Y.2    Chen, C.-S.3
  • 25
    • 84866666373 scopus 로고    scopus 로고
    • Beyond spatial pyramids: Receptive field learning for pooled image features
    • IEEE
    • Y. Jia, C. Huang, and T. Darrell. Beyond spatial pyramids: Receptive field learning for pooled image features. In CVPR, pages 3370-3377. IEEE, 2012.
    • (2012) CVPR , pp. 3370-3377
    • Jia, Y.1    Huang, C.2    Darrell, T.3
  • 28
    • 84887042736 scopus 로고    scopus 로고
    • Using very deep autoencoders for content-based image retrieval
    • Citeseer
    • A. Krizhevsky and G. E. Hinton. Using very deep autoencoders for content-based image retrieval. In ESANN. Citeseer, 2011.
    • (2011) ESANN
    • Krizhevsky, A.1    Hinton, G.E.2
  • 29
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1097-1105, 2012.
    • (2012) NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 30
    • 0025919961 scopus 로고
    • An efficient agglomerative clustering algorithm using a heap
    • T. Kurita. An efficient agglomerative clustering algorithm using a heap. Pattern Recognition, 24(3):205-209, 1991.
    • (1991) Pattern Recognition , vol.24 , Issue.3 , pp. 205-209
    • Kurita, T.1
  • 31
    • 84890478042 scopus 로고    scopus 로고
    • Building high-level features using large scale unsupervised learning
    • IEEE
    • Q. V. Le. Building high-level features using large scale unsupervised learning. In ICASSP, pages 8595-8598. IEEE, 2013.
    • (2013) ICASSP , pp. 8595-8598
    • Le, Q.V.1
  • 32
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 33
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • ACM
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML, pages 609-616. ACM, 2009.
    • (2009) ICML , pp. 609-616
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 34
    • 84919800661 scopus 로고    scopus 로고
    • Stable and efficient representation learning with nonnegativity constraints
    • T.-H. Lin and H. Kung. Stable and efficient representation learning with nonnegativity constraints. In ICML, pages 1323-1331, 2014.
    • (2014) ICML , pp. 1323-1331
    • Lin, T.-H.1    Kung, H.2
  • 35
    • 0033284915 scopus 로고    scopus 로고
    • Object recognition from local scaleinvariant features
    • IEEE
    • D. G. Lowe. Object recognition from local scaleinvariant features. In ICCV, volume 2, pages 1150-1157. IEEE, 1999.
    • (1999) ICCV , vol.2 , pp. 1150-1157
    • Lowe, D.G.1
  • 38
    • 21944443104 scopus 로고    scopus 로고
    • A universal density profile from hierarchical clustering
    • J. F. Navarro, C. S. Frenk, and S. D. White. A universal density profile from hierarchical clustering. The Astrophysical Journal, 490(2):493, 1997.
    • (1997) The Astrophysical Journal , vol.490 , Issue.2 , pp. 493
    • Navarro, J.F.1    Frenk, C.S.2    White, S.D.3
  • 40
    • 84899013108 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • A. Y. Ng, M. I. Jordan, Y. Weiss, et al. On spectral clustering: Analysis and an algorithm. NIPS, 2:849-856, 2002.
    • (2002) NIPS , vol.2 , pp. 849-856
    • Ng, A.Y.1    Jordan, M.I.2    Weiss, Y.3
  • 41
    • 34948870900 scopus 로고    scopus 로고
    • Unsupervised learning of invariant feature hierarchies with applications to object recognition
    • IEEE
    • M. A. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. Le-Cun. Unsupervised learning of invariant feature hierarchies with applications to object recognition. In CVPR, pages 1-8. IEEE, 2007.
    • (2007) CVPR , pp. 1-8
    • Ranzato, M.A.1    Huang, F.J.2    Boureau, Y.-L.3    Le-Cun, Y.4
  • 42
    • 84959250728 scopus 로고    scopus 로고
    • Dataset fingerprints: Exploring image collections through data mining
    • K. Rematas, B. Fernando, F. Dellaert, and T. Tuytelaars. Dataset fingerprints: Exploring image collections through data mining. In IEEE CVPR, pages 4867-4875, 2015.
    • (2015) IEEE CVPR , pp. 4867-4875
    • Rematas, K.1    Fernando, B.2    Dellaert, F.3    Tuytelaars, T.4
  • 43
    • 84960980241 scopus 로고    scopus 로고
    • Faster r-cnn: Towards real-time object detection with region proposal networks
    • S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In NIPS, pages 91-99, 2015.
    • (2015) NIPS , pp. 91-99
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 45
    • 84946751287 scopus 로고    scopus 로고
    • Facenet: A unified embedding for face recognition and clustering
    • F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition and clustering. In CVPR, pages 815-823, 2015.
    • (2015) CVPR , pp. 815-823
    • Schroff, F.1    Kalenichenko, D.2    Philbin, J.3
  • 47
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE TPAMI, 22(8):888-905, 2000.
    • (2000) IEEE TPAMI , vol.22 , Issue.8 , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 48
    • 4544292940 scopus 로고    scopus 로고
    • The cmu pose, illumination, and expression (pie) database
    • IEEE
    • T. Sim, S. Baker, and M. Bsat. The cmu pose, illumination, and expression (pie) database. In FG, pages 46-51. IEEE, 2002.
    • (2002) FG , pp. 46-51
    • Sim, T.1    Baker, S.2    Bsat, M.3
  • 50
    • 84867880615 scopus 로고    scopus 로고
    • Unsupervised discovery of mid-level discriminative patches
    • S. Singh, A. Gupta, and A. Efros. Unsupervised discovery of mid-level discriminative patches. ECCV, pages 73-86, 2012.
    • (2012) ECCV , pp. 73-86
    • Singh, S.1    Gupta, A.2    Efros, A.3
  • 51
    • 84908218622 scopus 로고    scopus 로고
    • Learning deep representations for graph clustering
    • F. Tian, B. Gao, Q. Cui, E. Chen, and T.-Y. Liu. Learning deep representations for graph clustering. In AAAI, pages 1293-1299, 2014.
    • (2014) AAAI , pp. 1293-1299
    • Tian, F.1    Gao, B.2    Cui, Q.3    Chen, E.4    Liu, T.-Y.5
  • 52
    • 84919833428 scopus 로고    scopus 로고
    • A deep semi-nmf model for learning hidden representations
    • G. Trigeorgis, K. Bousmalis, S. Zafeiriou, and B. Schuller. A deep semi-nmf model for learning hidden representations. In ICML, pages 1692-1700, 2014.
    • (2014) ICML , pp. 1692-1700
    • Trigeorgis, G.1    Bousmalis, K.2    Zafeiriou, S.3    Schuller, B.4
  • 53
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • ACM
    • P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with denoising autoencoders. In ICML, pages 1096-1103. ACM, 2008.
    • (2008) ICML , pp. 1096-1103
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.-A.4
  • 55
    • 84973889989 scopus 로고    scopus 로고
    • Unsupervised learning of visual representations using videos
    • X. Wang and A. Gupta. Unsupervised learning of visual representations using videos. In ICCV, pages 2794-2802, 2015.
    • (2015) ICCV , pp. 2794-2802
    • Wang, X.1    Gupta, A.2
  • 57
    • 80052899838 scopus 로고    scopus 로고
    • Face recognition in unconstrained videos with matched background similarity
    • IEEE
    • L. Wolf, T. Hassner, and I. Maoz. Face recognition in unconstrained videos with matched background similarity. In CVPR, pages 529-534. IEEE, 2011.
    • (2011) CVPR , pp. 529-534
    • Wolf, L.1    Hassner, T.2    Maoz, I.3
  • 58
    • 85009856931 scopus 로고    scopus 로고
    • Integrating image clustering and codebook learning
    • P. Xie and E. Xing. Integrating image clustering and codebook learning. In AAAI, 2015.
    • (2015) AAAI
    • Xie, P.1    Xing, E.2
  • 60
    • 77949767628 scopus 로고    scopus 로고
    • Nonlinear nonnegative component analysis algorithms
    • S. Zafeiriou and M. Petrou. Nonlinear nonnegative component analysis algorithms. IEEE TIP, 19(4):1050-1066, 2010.
    • (2010) IEEE TIP , vol.19 , Issue.4 , pp. 1050-1066
    • Zafeiriou, S.1    Petrou, M.2
  • 61
    • 33644783522 scopus 로고    scopus 로고
    • Self-tuning spectral clustering
    • L. Zelnik-Manor and P. Perona. Self-tuning spectral clustering. In NIPS, pages 1601-1608, 2004.
    • (2004) NIPS , pp. 1601-1608
    • Zelnik-Manor, L.1    Perona, P.2
  • 62
    • 84867861862 scopus 로고    scopus 로고
    • Graph degree linkage: Agglomerative clustering on a directed graph
    • Springer
    • W. Zhang, X.Wang, D. Zhao, and X. Tang. Graph degree linkage: Agglomerative clustering on a directed graph. In ECCV, pages 428-441. Springer, 2012.
    • (2012) ECCV , pp. 428-441
    • Zhang, W.1    Wang, X.2    Zhao, D.3    Tang, X.4
  • 63
    • 84878847284 scopus 로고    scopus 로고
    • Agglomerative clustering via maximum incremental path integral
    • W. Zhang, D. Zhao, and X. Wang. Agglomerative clustering via maximum incremental path integral. Pattern Recognition, 46(11):3056-3065, 2013.
    • (2013) Pattern Recognition , vol.46 , Issue.11 , pp. 3056-3065
    • Zhang, W.1    Zhao, D.2    Wang, X.3
  • 64
    • 84858780238 scopus 로고    scopus 로고
    • Cyclizing clusters via zeta function of a graph
    • D. Zhao and X. Tang. Cyclizing clusters via zeta function of a graph. In NIPS, pages 1953-1960, 2009.
    • (2009) NIPS , pp. 1953-1960
    • Zhao, D.1    Tang, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.