메뉴 건너뛰기




Volumn , Issue , 2012, Pages 3370-3377

Beyond spatial pyramids: Receptive field learning for pooled image features

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION ACCURACY; CODEBOOKS; DATA SETS; FAST LEARNING; FEATURE SPACE; IMAGE FEATURES; RECEPTIVE FIELDS; SPATIAL REGIONS;

EID: 84866666373     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6248076     Document Type: Conference Paper
Times cited : (251)

References (37)
  • 1
    • 51949090223 scopus 로고    scopus 로고
    • Defense of nearest-neighbor based image classification
    • 7
    • O Boiman, E Shechtman, andMIrani. In defense of nearest-neighbor based image classification. In CVPR, 2008. 7
    • (2008) CVPR
    • Boiman, O.1    Shechtman, E.2    Irani, M.3
  • 2
    • 77955993281 scopus 로고    scopus 로고
    • Learning mid-level features for recognition
    • 1
    • Y Boureau, F Bach, Y LeCun, and J Ponce. Learning mid-level features for recognition. In CVPR, 2010. 1
    • (2010) CVPR
    • Boureau, Y.1    Bach, F.2    Lecun, Y.3    Ponce, J.4
  • 3
    • 84856649187 scopus 로고    scopus 로고
    • Ask the locals: Multi-way local pooling for image recognition
    • 3, 7, 8
    • Y Boureau, N Le Roux, F Bach, J Ponce, and Y LeCun. Ask the locals: multi-way local pooling for image recognition. In ICCV, 2011. 3, 7, 8
    • (2011) ICCV
    • Boureau, Y.1    Le Roux, N.2    Bach, F.3    Ponce, J.4    Lecun, Y.5
  • 4
    • 77956502203 scopus 로고    scopus 로고
    • A theoretical analysis of feature pooling in visual recognition
    • 1, 3
    • Y Boureau and J Ponce. A theoretical analysis of feature pooling in visual recognition. In ICML, 2010. 1, 3
    • (2010) ICML
    • Boureau, Y.1    Ponce, J.2
  • 6
    • 80053446757 scopus 로고    scopus 로고
    • An analysis of single-layer networks in unsupervised feature learning
    • 1, 2, 3, 5, 6, 7
    • A Coates, H Lee, and AY Ng. An analysis of single-layer networks in unsupervised feature learning. In AISTATS, 2010. 1, 2, 3, 5, 6, 7
    • (2010) AISTATS
    • Coates, A.1    Lee, H.2    Ng, A.Y.3
  • 7
    • 85162494200 scopus 로고    scopus 로고
    • Selecting receptive fields in deep networks
    • 1
    • A. Coates and A.Y. Ng. Selecting receptive fields in deep networks. In NIPS, 2011. 1
    • (2011) NIPS
    • Coates, A.1    Ng, A.Y.2
  • 8
    • 85162494200 scopus 로고    scopus 로고
    • Selecting receptive fields in deep networks
    • 7
    • A Coates and AY Ng. Selecting receptive fields in deep networks. In NIPS, 2011. 7
    • (2011) NIPS
    • Coates, A.1    Ng, A.Y.2
  • 9
    • 80053442434 scopus 로고    scopus 로고
    • The importance of encoding versus training with sparse coding and vector quantization
    • 1, 2, 5, 7
    • A Coates and AY Ng. The importance of encoding versus training with sparse coding and vector quantization. In ICML, 2011. 1, 2, 5, 7
    • (2011) ICML
    • Coates, A.1    Ng, A.Y.2
  • 10
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • 1
    • N Dalal. Histograms of oriented gradients for human detection. In CVPR, 2005. 1
    • (2005) CVPR
    • Dalal, N.1
  • 12
    • 80052872055 scopus 로고    scopus 로고
    • Geometric Lp-norm feature pooling for image classification
    • 7, 8
    • J Feng, B Ni, Q Tian, and S Yan. Geometric Lp-norm Feature Pooling for Image Classification. In CVPR, 2011. 7, 8
    • (2011) CVPR
    • Feng, J.1    Ni, B.2    Tian, Q.3    Yan, S.4
  • 13
    • 33645410496 scopus 로고
    • Receptive fields, binocular interaction and functional architecture in the cat's visual cortex
    • 1
    • DH Hubel and TN Wiesel. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of Physiology, 160:106-154, 1962. 1
    • (1962) The Journal of Physiology , vol.160 , pp. 106-154
    • Hubel, D.H.1    Wiesel, T.N.2
  • 15
    • 77953183471 scopus 로고    scopus 로고
    • What is the best multi-stage architecture for object recognition?
    • 7
    • K Jarrett, K Kavukcuoglu, MA Ranzato, and Y LeCun. What is the best multi-stage architecture for object recognition? In ICCV, 2009. 7
    • (2009) ICCV
    • Jarrett, K.1    Kavukcuoglu, K.2    Ranzato, M.3    Lecun, Y.4
  • 16
    • 80052906316 scopus 로고    scopus 로고
    • A probabilistic model for recursive factorized image features
    • 7
    • S Karayev, M Fritz, S Fidler, and T Darrell. A probabilistic model for recursive factorized image features. In CVPR, 2011. 7
    • (2011) CVPR
    • Karayev, S.1    Fritz, M.2    Fidler, S.3    Darrell, T.4
  • 17
    • 0032672025 scopus 로고    scopus 로고
    • The structure of locally orderless images
    • 1
    • JJ Koenderink and AJ van Doorn. The structure of locally orderless images. IJCV, 31(2/3):159-168, 1999. 1
    • (1999) IJCV , vol.31 , Issue.2-3 , pp. 159-168
    • Koenderink, J.J.1    Van Doorn, A.J.2
  • 19
    • 56449124824 scopus 로고    scopus 로고
    • Simple method for high-performance digit recognition based on sparse coding
    • 7
    • K Labusch, E Barth, and T Martinetz. Simple method for high-performance digit recognition based on sparse coding. IEEE TNN, 19(11):1985-1989, 2008. 7
    • (2008) IEEE TNN , vol.19 , Issue.11 , pp. 1985-1989
    • Labusch, K.1    Barth, E.2    Martinetz, T.3
  • 20
    • 33947170570 scopus 로고    scopus 로고
    • A trainable feature extractor for handwritten digit recognition
    • 7
    • F Lauer, CY Suen, and G Bloch. A trainable feature extractor for handwritten digit recognition. Pattern Recognition, 40(6):1816-1824, 2007. 7
    • (2007) Pattern Recognition , vol.40 , Issue.6 , pp. 1816-1824
    • Lauer, F.1    Suen, C.Y.2    Bloch, G.3
  • 21
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • 1, 3, 7
    • S Lazebnik, C Schmid, and J Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006. 1, 3, 7
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 22
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • 1
    • D Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004. 1
    • (2004) IJCV
    • Lowe, D.1
  • 23
    • 76749107542 scopus 로고    scopus 로고
    • Online learning for matrix factorization and sparse coding
    • 1
    • J Mairal, F Bach, J Ponce, and G Sapiro. Online learning for matrix factorization and sparse coding. JMLR, 11:19-60, 2010. 1
    • (2010) JMLR , vol.11 , pp. 19-60
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 24
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by V1?
    • 1
    • B Olshausen and DJ Field. Sparse coding with an overcomplete basis set: a strategy employed by V1? Vision research, 37(23):3311-3325, 1997. 1
    • (1997) Vision Research , vol.37 , Issue.23 , pp. 3311-3325
    • Olshausen, B.1    Field, D.J.2
  • 25
    • 1942418470 scopus 로고    scopus 로고
    • Grafting: Fast, incremental feature selection by gradient descent in function space
    • 4, 6
    • S Perkins, K Lacker, and J Theiler. Grafting: fast, incremental feature selection by gradient descent in function space. JMLR, 3:1333-1356, 2003. 4, 6
    • (2003) JMLR , vol.3 , pp. 1333-1356
    • Perkins, S.1    Lacker, K.2    Theiler, J.3
  • 26
    • 51949094374 scopus 로고    scopus 로고
    • Transfer learning for image classification with sparse prototype representations
    • 4
    • A Quattoni, M Collins, and T Darrell. Transfer learning for image classification with sparse prototype representations. In CVPR, 2008. 4
    • (2008) CVPR
    • Quattoni, A.1    Collins, M.2    Darrell, T.3
  • 27
    • 34948870900 scopus 로고    scopus 로고
    • Unsupervised learning of invariant feature hierarchies with applications to object recognition
    • 7
    • MA Ranzato, FJ Huang, Y Boureau, and Y LeCun. Unsupervised learning of invariant feature hierarchies with applications to object recognition. In CVPR, 2007. 7
    • (2007) CVPR
    • Ranzato, M.1    Huang, F.J.2    Boureau, Y.3    Lecun, Y.4
  • 28
    • 80052904079 scopus 로고    scopus 로고
    • Are sparse representations really relevant for image classification?
    • 1
    • R Rigamonti, MA Brown, and V Lepetit. Are sparse representations really relevant for image classification? In CVPR, 2011. 1
    • (2011) CVPR
    • Rigamonti, R.1    Brown, M.2    Lepetit, V.3
  • 29
    • 51949118201 scopus 로고    scopus 로고
    • Structure learning in random fields for heart motion abnormality detection
    • 4
    • M Schmidt, K Murphy, G Fung, and R Rosales. Structure learning in random fields for heart motion abnormality detection. In CVPR, 2008. 4
    • (2008) CVPR
    • Schmidt, M.1    Murphy, K.2    Fung, G.3    Rosales, R.4
  • 30
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • 6
    • R Tibshirani. Regression shrinkage and selection via the lasso. JRSS Series B, pages 267-288, 1996. 6
    • (1996) JRSS Series B , pp. 267-288
    • Tibshirani, R.1
  • 31
    • 77955996870 scopus 로고    scopus 로고
    • Locality-constrained linear coding for image classification
    • 1, 7
    • J Wang, J Yang, K Yu, F Lv, T Huang, and Y Gong. Locality-constrained linear coding for image classification. In CVPR, 2010. 1, 7
    • (2010) CVPR
    • Wang, J.1    Yang, J.2    Yu, K.3    Lv, F.4    Huang, T.5    Gong, Y.6
  • 32
    • 34948826471 scopus 로고    scopus 로고
    • Learning local image descriptors
    • 1
    • SWinder andMBrown. Learning local image descriptors. In CVPR, 2007. 1
    • (2007) CVPR
    • Winder, S.1    Brown, M.2
  • 33
    • 70450209196 scopus 로고    scopus 로고
    • Linear spatial pyramid matching using sparse coding for image classification
    • 1, 3, 7
    • J Yang, K Yu, and Y Gong. Linear spatial pyramid matching using sparse coding for image classification. In CVPR, 2009. 1, 3, 7
    • (2009) CVPR
    • Yang, J.1    Yu, K.2    Gong, Y.3
  • 34
    • 80052906448 scopus 로고    scopus 로고
    • Efficient highly over-complete sparse coding using a mixture model
    • 1, 8
    • J Yang, K Yu, and T Huang. Efficient highly over-complete sparse coding using a mixture model. In ECCV, 2010. 1, 8
    • (2010) ECCV
    • Yang, J.1    Yu, K.2    Huang, T.3
  • 35
    • 77956510751 scopus 로고    scopus 로고
    • Improved local coordinate coding using local tangents
    • 7
    • K Yu and T Zhang. Improved local coordinate coding using local tangents. In ICML, 2010. 7
    • (2010) ICML
    • Yu, K.1    Zhang, T.2
  • 36
    • 84856686379 scopus 로고    scopus 로고
    • Adaptive deconvolutional networks for mid and high level feature learning
    • 7
    • MD Zeiler, GW Taylor, and R Fergus. Adaptive deconvolutional networks for mid and high level feature learning. In ICCV, 2011. 7
    • (2011) ICCV
    • Zeiler, M.D.1    Taylor, G.W.2    Fergus, R.3
  • 37
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • 4
    • H Zou and T Hastie. Regularization and variable selection via the elastic net. JRSS, 67(2):301-320, 2005. 4
    • (2005) JRSS , vol.67 , Issue.2 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.