메뉴 건너뛰기




Volumn 4, Issue , 2014, Pages 3127-3135

Stable and efficient representation learning with nonnegativity constraints

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION ALGORITHMS; ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); IMAGE MATCHING; LEARNING SYSTEMS;

EID: 84919800661     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (33)

References (32)
  • 2
    • 27244444336 scopus 로고    scopus 로고
    • Slow feature analysis yields a rich repertoire of complex cell properties
    • Berkes, P. and Wiskott, L. Slow feature analysis yields a rich repertoire of complex cell properties. Journal of Vision, 5(6):579-602, 2005.
    • (2005) Journal of Vision , vol.5 , Issue.6 , pp. 579-602
    • Berkes, P.1    Wiskott, L.2
  • 3
    • 84872231524 scopus 로고    scopus 로고
    • Unsupervised feature learning for RGB-D based object recognition
    • Bo, L., Ren, X., and Fox, D. Unsupervised feature learning for RGB-D based object recognition. In ISER, 2012.
    • (2012) ISER
    • Bo, L.1    Ren, X.2    Fox, D.3
  • 4
    • 55349132734 scopus 로고    scopus 로고
    • On the uniqueness of nonnegative sparse solutions to underde- Termined systems of equations
    • Bruckstein, A., Elad, M., and Zibulevsky, M. On the uniqueness of nonnegative sparse solutions to underde- Termined systems of equations. IEEE Trans. Inform. Theory, 54(11):4813-4820, 2008.
    • (2008) IEEE Trans. Inform. Theory , vol.54 , Issue.11 , pp. 4813-4820
    • Bruckstein, A.1    Elad, M.2    Zibulevsky, M.3
  • 5
    • 80053442434 scopus 로고    scopus 로고
    • The importance of encoding versus training with sparse coding and vector quantization
    • Coates, A. and Ng, A. The importance of encoding versus training with sparse coding and vector quantization. In ICML, 2011a.
    • (2011) ICML
    • Coates, A.1    Ng, A.2
  • 6
    • 85162494200 scopus 로고    scopus 로고
    • Selecting receptive fields in deep networks
    • Coates, A. and Ng, A. Selecting receptive fields in deep networks. In NIPS, 2011b.
    • (2011) NIPS
    • Coates, A.1    Ng, A.2
  • 7
    • 80053446757 scopus 로고    scopus 로고
    • An analysis of single-layer networks in unsupervised feature learning
    • Coates, A., Ng, A., and Lee, H. An analysis of single-layer networks in unsupervised feature learning. In AISTATS, 2011.
    • (2011) AISTATS
    • Coates, A.1    Ng, A.2    Lee, H.3
  • 8
    • 23744456750 scopus 로고    scopus 로고
    • When does non-negative matrix factorization give a correct decomposition into parts?
    • Donoho, D. and Stodden, V. When does non-negative matrix factorization give a correct decomposition into parts? In NIPS. 2003.
    • (2003) NIPS
    • Donoho, D.1    Stodden, V.2
  • 9
    • 33144483155 scopus 로고    scopus 로고
    • Stable recovery of sparse overcomplete representations in the presence of noise
    • Donoho, D., Elad, M., and Temlyakov, V. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inform. Theory, 52(1):6-18, 2006.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , Issue.1 , pp. 6-18
    • Donoho, D.1    Elad, M.2    Temlyakov, V.3
  • 10
    • 84867135004 scopus 로고    scopus 로고
    • Large-scale feature learning with spike-and-slab sparse coding
    • Goodfellow, I, Courville, A, and Bengio, Y. Large-scale feature learning with spike-and-slab sparse coding. In ICML, 2012.
    • (2012) ICML
    • Goodfellow, I.1    Courville, A.2    Bengio, Y.3
  • 12
    • 77956515664 scopus 로고    scopus 로고
    • Learning fast approximations of sparse coding
    • Gregor, K. and LeCun, Y. Learning fast approximations of sparse coding. In ICML, 2010.
    • (2010) ICML
    • Gregor, K.1    LeCun, Y.2
  • 13
    • 0037780988 scopus 로고    scopus 로고
    • Modeling receptive fields with non-negative sparse coding
    • Hoyer, P. Modeling receptive fields with non-negative sparse coding. Neurocomputing, 52:547-552, 2003.
    • (2003) Neurocomputing , vol.52 , pp. 547-552
    • Hoyer, P.1
  • 14
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparse- ness constraints
    • Hoyer, P. Non-negative matrix factorization with sparse- ness constraints. The Journal of Machine Learning Research, 5:1457-1469, 2004.
    • (2004) The Journal of Machine Learning Research , vol.5 , pp. 1457-1469
    • Hoyer, P.1
  • 15
    • 84897486975 scopus 로고    scopus 로고
    • Direct modeling of complex invariances for visual object features
    • Hui, K.-Y. Direct Modeling of Complex Invariances for Visual Object Features. In ICML, 2013.
    • (2013) ICML
    • Hui, K.-Y.1
  • 19
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee, D. D. and Seung, H. S. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755): 788-791, 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 20
    • 85147175076 scopus 로고    scopus 로고
    • Efficient sparse coding algorithms
    • Lee, H., Battle, A., Raina, R., and Ng, A. Efficient sparse coding algorithms. In NIPS, 2006.
    • (2006) NIPS
    • Lee, H.1    Battle, A.2    Raina, R.3    Ng, A.4
  • 21
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • Lee, H., Grosse, R., Ranganath, R., and Ng, A. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML, 2009.
    • (2009) ICML
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.4
  • 22
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted boltzmann machines
    • Nair, V. and Hinton, G. E. Rectified linear units improve restricted boltzmann machines. In ICML, 2010.
    • (2010) ICML
    • Nair, V.1    Hinton, G.E.2
  • 24
    • 0028561099 scopus 로고
    • Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
    • Paatero, P. and Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5(2): 111 126, 1994.
    • (1994) Environmetrics , vol.5 , Issue.2 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 26
    • 51949106645 scopus 로고    scopus 로고
    • Self- Taught learning: Transfer learning from unlabeled data
    • Raina, R., Battle, A., Lee, H., Packer, B., and Ng, A. Self- Taught learning: Transfer learning from unlabeled data. In ICML, 2007.
    • (2007) ICML
    • Raina, R.1    Battle, A.2    Lee, H.3    Packer, B.4    Ng, A.5
  • 27
    • 34948870900 scopus 로고    scopus 로고
    • Unsupervised learning of invariant feature hierarchies with applications to object recognition
    • IEEE
    • Ranzato, M., Huang, F., Boureau, Y-L., and Lecun, Y. Unsupervised learning of invariant feature hierarchies with applications to object recognition. In CVPR. IEEE, 2007.
    • (2007) CVPR
    • Ranzato, M.1    Huang, F.2    Boureau, Y.-L.3    Lecun, Y.4
  • 28
    • 51849128608 scopus 로고    scopus 로고
    • Sparse coding via thresholding and local competition in neural circuits
    • Rozell, C., Johnson, D., Baraniuk, R., and Olshausen, B. A. Sparse coding via thresholding and local competition in neural circuits. Neural computation, 20(10):2526-2563, 2008.
    • (2008) Neural Computation , vol.20 , Issue.10 , pp. 2526-2563
    • Rozell, C.1    Johnson, D.2    Baraniuk, R.3    Olshausen, B.A.4
  • 29
    • 80052341119 scopus 로고    scopus 로고
    • Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit
    • Rubinstein, R., Zibulevsky, M., and Elad, M. Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit. CS Technion, 2008.
    • (2008) CS Technion
    • Rubinstein, R.1    Zibulevsky, M.2    Elad, M.3
  • 30
    • 84866006615 scopus 로고    scopus 로고
    • Large-scale distributed non- negative sparse coding and sparse dictionary learning
    • Sindhwani, V. and Ghoting, A. Large-scale distributed non- negative sparse coding and sparse dictionary learning. In KDD, 2012.
    • (2012) KDD
    • Sindhwani, V.1    Ghoting, A.2
  • 31
    • 84875624271 scopus 로고    scopus 로고
    • Sparse recovery by thresholded non-negative least squares
    • Slawski, M. and Hein, M. Sparse recovery by thresholded non-negative least squares. In NIPS, 2011.
    • (2011) NIPS
    • Slawski, M.1    Hein, M.2
  • 32
    • 85083954484 scopus 로고    scopus 로고
    • Stochastic pooling for regularization of deep convolutional neural networks
    • Zeiler, M. and Fergus, R. Stochastic pooling for regulariza- Tion of deep convolutional neural networks. ICLR, 2013.
    • (2013) ICLR
    • Zeiler, M.1    Fergus, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.