-
1
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Bengio, Y., Courville, A., and Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Machine Intell., 35(8): 1798-1828, 2013.
-
(2013)
IEEE Trans. Pattern Anal. Machine Intell.
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
2
-
-
27244444336
-
Slow feature analysis yields a rich repertoire of complex cell properties
-
Berkes, P. and Wiskott, L. Slow feature analysis yields a rich repertoire of complex cell properties. Journal of Vision, 5(6):579-602, 2005.
-
(2005)
Journal of Vision
, vol.5
, Issue.6
, pp. 579-602
-
-
Berkes, P.1
Wiskott, L.2
-
3
-
-
84872231524
-
Unsupervised feature learning for RGB-D based object recognition
-
Bo, L., Ren, X., and Fox, D. Unsupervised feature learning for RGB-D based object recognition. In ISER, 2012.
-
(2012)
ISER
-
-
Bo, L.1
Ren, X.2
Fox, D.3
-
4
-
-
55349132734
-
On the uniqueness of nonnegative sparse solutions to underde- Termined systems of equations
-
Bruckstein, A., Elad, M., and Zibulevsky, M. On the uniqueness of nonnegative sparse solutions to underde- Termined systems of equations. IEEE Trans. Inform. Theory, 54(11):4813-4820, 2008.
-
(2008)
IEEE Trans. Inform. Theory
, vol.54
, Issue.11
, pp. 4813-4820
-
-
Bruckstein, A.1
Elad, M.2
Zibulevsky, M.3
-
5
-
-
80053442434
-
The importance of encoding versus training with sparse coding and vector quantization
-
Coates, A. and Ng, A. The importance of encoding versus training with sparse coding and vector quantization. In ICML, 2011a.
-
(2011)
ICML
-
-
Coates, A.1
Ng, A.2
-
6
-
-
85162494200
-
Selecting receptive fields in deep networks
-
Coates, A. and Ng, A. Selecting receptive fields in deep networks. In NIPS, 2011b.
-
(2011)
NIPS
-
-
Coates, A.1
Ng, A.2
-
7
-
-
80053446757
-
An analysis of single-layer networks in unsupervised feature learning
-
Coates, A., Ng, A., and Lee, H. An analysis of single-layer networks in unsupervised feature learning. In AISTATS, 2011.
-
(2011)
AISTATS
-
-
Coates, A.1
Ng, A.2
Lee, H.3
-
8
-
-
23744456750
-
When does non-negative matrix factorization give a correct decomposition into parts?
-
Donoho, D. and Stodden, V. When does non-negative matrix factorization give a correct decomposition into parts? In NIPS. 2003.
-
(2003)
NIPS
-
-
Donoho, D.1
Stodden, V.2
-
9
-
-
33144483155
-
Stable recovery of sparse overcomplete representations in the presence of noise
-
Donoho, D., Elad, M., and Temlyakov, V. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inform. Theory, 52(1):6-18, 2006.
-
(2006)
IEEE Trans. Inform. Theory
, vol.52
, Issue.1
, pp. 6-18
-
-
Donoho, D.1
Elad, M.2
Temlyakov, V.3
-
10
-
-
84867135004
-
Large-scale feature learning with spike-and-slab sparse coding
-
Goodfellow, I, Courville, A, and Bengio, Y. Large-scale feature learning with spike-and-slab sparse coding. In ICML, 2012.
-
(2012)
ICML
-
-
Goodfellow, I.1
Courville, A.2
Bengio, Y.3
-
12
-
-
77956515664
-
Learning fast approximations of sparse coding
-
Gregor, K. and LeCun, Y. Learning fast approximations of sparse coding. In ICML, 2010.
-
(2010)
ICML
-
-
Gregor, K.1
LeCun, Y.2
-
13
-
-
0037780988
-
Modeling receptive fields with non-negative sparse coding
-
Hoyer, P. Modeling receptive fields with non-negative sparse coding. Neurocomputing, 52:547-552, 2003.
-
(2003)
Neurocomputing
, vol.52
, pp. 547-552
-
-
Hoyer, P.1
-
14
-
-
84900510076
-
Non-negative matrix factorization with sparse- ness constraints
-
Hoyer, P. Non-negative matrix factorization with sparse- ness constraints. The Journal of Machine Learning Research, 5:1457-1469, 2004.
-
(2004)
The Journal of Machine Learning Research
, vol.5
, pp. 1457-1469
-
-
Hoyer, P.1
-
15
-
-
84897486975
-
Direct modeling of complex invariances for visual object features
-
Hui, K.-Y. Direct Modeling of Complex Invariances for Visual Object Features. In ICML, 2013.
-
(2013)
ICML
-
-
Hui, K.-Y.1
-
16
-
-
70049083257
-
-
CBLL-TR-2008-12-01, NYU
-
Kavukcuoglu, K., Ranzato, M., and LeCun, Y. Fast inference in sparse coding algorithms with applications to object recognition. CBLL-TR-2008-12-01, NYU, 2008.
-
(2008)
Fast Inference in Sparse Coding Algorithms with Applications to Object Recognition
-
-
Kavukcuoglu, K.1
Ranzato, M.2
LeCun, Y.3
-
17
-
-
85162460675
-
Learning convolutional feature hierarchies for visual recognition
-
Kavukcuoglu, K., Sermanet, P., Boureau, Y-L., Gregor, K., Mathieu, M., and LeCun, Y. Learning convolutional feature hierarchies for visual recognition. In NIPS, 2010.
-
(2010)
NIPS
-
-
Kavukcuoglu, K.1
Sermanet, P.2
Boureau, Y.-L.3
Gregor, K.4
Mathieu, M.5
LeCun, Y.6
-
19
-
-
0033592606
-
Learning the parts of objects by non-negative matrix factorization
-
Lee, D. D. and Seung, H. S. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755): 788-791, 1999.
-
(1999)
Nature
, vol.401
, Issue.6755
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
20
-
-
85147175076
-
Efficient sparse coding algorithms
-
Lee, H., Battle, A., Raina, R., and Ng, A. Efficient sparse coding algorithms. In NIPS, 2006.
-
(2006)
NIPS
-
-
Lee, H.1
Battle, A.2
Raina, R.3
Ng, A.4
-
21
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
Lee, H., Grosse, R., Ranganath, R., and Ng, A. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML, 2009.
-
(2009)
ICML
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.4
-
22
-
-
77956509090
-
Rectified linear units improve restricted boltzmann machines
-
Nair, V. and Hinton, G. E. Rectified linear units improve restricted boltzmann machines. In ICML, 2010.
-
(2010)
ICML
-
-
Nair, V.1
Hinton, G.E.2
-
23
-
-
85162445285
-
Sparse filtering
-
Ngiam, J., Koh, P.-W., Chen, Z., Bhaskar, S., and Ng, A. Sparse filtering. In NIPS, 2011.
-
(2011)
NIPS
-
-
Ngiam, J.1
Koh, P.-W.2
Chen, Z.3
Bhaskar, S.4
Ng, A.5
-
24
-
-
0028561099
-
Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
-
Paatero, P. and Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5(2): 111 126, 1994.
-
(1994)
Environmetrics
, vol.5
, Issue.2
, pp. 111-126
-
-
Paatero, P.1
Tapper, U.2
-
25
-
-
0027814133
-
Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition
-
IEEE
-
Pati, Y. C., Rezaiifar, R., and Krishnaprasad, P. S. Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In Asilomar Conference on Signals, Systems and Computers. IEEE, 1993.
-
(1993)
Asilomar Conference on Signals, Systems and Computers
-
-
Pati, Y.C.1
Rezaiifar, R.2
Krishnaprasad, P.S.3
-
26
-
-
51949106645
-
Self- Taught learning: Transfer learning from unlabeled data
-
Raina, R., Battle, A., Lee, H., Packer, B., and Ng, A. Self- Taught learning: Transfer learning from unlabeled data. In ICML, 2007.
-
(2007)
ICML
-
-
Raina, R.1
Battle, A.2
Lee, H.3
Packer, B.4
Ng, A.5
-
27
-
-
34948870900
-
Unsupervised learning of invariant feature hierarchies with applications to object recognition
-
IEEE
-
Ranzato, M., Huang, F., Boureau, Y-L., and Lecun, Y. Unsupervised learning of invariant feature hierarchies with applications to object recognition. In CVPR. IEEE, 2007.
-
(2007)
CVPR
-
-
Ranzato, M.1
Huang, F.2
Boureau, Y.-L.3
Lecun, Y.4
-
28
-
-
51849128608
-
Sparse coding via thresholding and local competition in neural circuits
-
Rozell, C., Johnson, D., Baraniuk, R., and Olshausen, B. A. Sparse coding via thresholding and local competition in neural circuits. Neural computation, 20(10):2526-2563, 2008.
-
(2008)
Neural Computation
, vol.20
, Issue.10
, pp. 2526-2563
-
-
Rozell, C.1
Johnson, D.2
Baraniuk, R.3
Olshausen, B.A.4
-
29
-
-
80052341119
-
Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit
-
Rubinstein, R., Zibulevsky, M., and Elad, M. Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit. CS Technion, 2008.
-
(2008)
CS Technion
-
-
Rubinstein, R.1
Zibulevsky, M.2
Elad, M.3
-
30
-
-
84866006615
-
Large-scale distributed non- negative sparse coding and sparse dictionary learning
-
Sindhwani, V. and Ghoting, A. Large-scale distributed non- negative sparse coding and sparse dictionary learning. In KDD, 2012.
-
(2012)
KDD
-
-
Sindhwani, V.1
Ghoting, A.2
-
31
-
-
84875624271
-
Sparse recovery by thresholded non-negative least squares
-
Slawski, M. and Hein, M. Sparse recovery by thresholded non-negative least squares. In NIPS, 2011.
-
(2011)
NIPS
-
-
Slawski, M.1
Hein, M.2
-
32
-
-
85083954484
-
Stochastic pooling for regularization of deep convolutional neural networks
-
Zeiler, M. and Fergus, R. Stochastic pooling for regulariza- Tion of deep convolutional neural networks. ICLR, 2013.
-
(2013)
ICLR
-
-
Zeiler, M.1
Fergus, R.2
|