메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 4545-4554

Semantic image segmentation with task-specific edge detection using CNNs and a discriminatively trained domain transform

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; EDGE DETECTION; NEURAL NETWORKS; PATTERN RECOGNITION; RANDOM PROCESSES; SEMANTICS;

EID: 84986275144     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.492     Document Type: Conference Paper
Times cited : (383)

References (46)
  • 1
    • 79953048649 scopus 로고    scopus 로고
    • Contour detection and hierarchical image segmentation
    • May
    • P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. PAMI, 33(5):898-916, May 2011.
    • (2011) PAMI , vol.33 , Issue.5 , pp. 898-916
    • Arbelaez, P.1    Maire, M.2    Fowlkes, C.3    Malik, J.4
  • 2
    • 84959231756 scopus 로고    scopus 로고
    • Deepedge: A multiscale bifurcated deep network for top-down contour detection
    • G. Bertasius, J. Shi, and L. Torresani. Deepedge: A multiscale bifurcated deep network for top-down contour detection. In CVPR, 2015.
    • (2015) CVPR
    • Bertasius, G.1    Shi, J.2    Torresani, L.3
  • 3
    • 84973888826 scopus 로고    scopus 로고
    • High-for-low and low-for-high: Efficient boundary detection from deep object features and its applications to high-level vision
    • G. Bertasius, J. Shi, and L. Torresani. High-for-low and low-for-high: Efficient boundary detection from deep object features and its applications to high-level vision. In ICCV, 2015.
    • (2015) ICCV
    • Bertasius, G.1    Shi, J.2    Torresani, L.3
  • 4
    • 84959245343 scopus 로고    scopus 로고
    • Scene labeling with lstm recurrent neural networks
    • W. Byeon, T. M. Breuel, F. Raue, and M. Liwicki. Scene labeling with lstm recurrent neural networks. In CVPR, 2015.
    • (2015) CVPR
    • Byeon, W.1    Breuel, T.M.2    Raue, F.3    Liwicki, M.4
  • 5
    • 85083954148 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected crfs
    • L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. In ICLR, 2015.
    • (2015) ICLR
    • Chen, L.-C.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 10
    • 84973890848 scopus 로고    scopus 로고
    • Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation
    • J. Dai, K. He, and J. Sun. Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In ICCV, 2015.
    • (2015) ICCV
    • Dai, J.1    He, K.2    Sun, J.3
  • 11
    • 84898820142 scopus 로고    scopus 로고
    • Structured forests for fast edge detection
    • P. Dollár and C. L. Zitnick. Structured forests for fast edge detection. In ICCV, 2013.
    • (2013) ICCV
    • Dollár, P.1    Zitnick, C.L.2
  • 12
    • 26444565569 scopus 로고
    • Finding structure in time
    • J. L. Elman. Finding structure in time. Cognitive science, 14(2):179-211, 1990.
    • (1990) Cognitive Science , vol.14 , Issue.2 , pp. 179-211
    • Elman, J.L.1
  • 14
    • 84876258641 scopus 로고    scopus 로고
    • Learning hierarchical features for scene labeling
    • C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning hierarchical features for scene labeling. PAMI, 2013.
    • (2013) PAMI
    • Farabet, C.1    Couprie, C.2    Najman, L.3    LeCun, Y.4
  • 15
    • 84959181749 scopus 로고    scopus 로고
    • N-4-fields: Neural network nearest neighbor fields for image transforms
    • Y. Ganin and V. Lempitsky. N-4-fields: Neural network nearest neighbor fields for image transforms. In ACCV, 2014.
    • (2014) ACCV
    • Ganin, Y.1    Lempitsky, V.2
  • 16
    • 84997572977 scopus 로고    scopus 로고
    • Domain transform for edge-aware image and video processing
    • E. S. L. Gastal and M. M. Oliveira. Domain transform for edge-aware image and video processing. In SIGGRAPH, 2011.
    • (2011) SIGGRAPH
    • Gastal, E.S.L.1    Oliveira, M.M.2
  • 17
    • 71249112130 scopus 로고    scopus 로고
    • Offline handwriting recognition with multidimensional recurrent neural networks
    • A. Graves and J. Schmidhuber. Offline handwriting recognition with multidimensional recurrent neural networks. In NIPS, 2009.
    • (2009) NIPS
    • Graves, A.1    Schmidhuber, J.2
  • 19
    • 84959236250 scopus 로고    scopus 로고
    • Hypercolumns for object segmentation and fine-grained localization
    • B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hypercolumns for object segmentation and fine-grained localization. In CVPR, 2015.
    • (2015) CVPR
    • Hariharan, B.1    Arbeláez, P.2    Girshick, R.3    Malik, J.4
  • 21
    • 85083952247 scopus 로고    scopus 로고
    • Pixel-wise deep learning for contour detection
    • J.-J. Hwang and T.-L. Liu. Pixel-wise deep learning for contour detection. In ICLR, 2015.
    • (2015) ICLR
    • Hwang, J.-J.1    Liu, T.-L.2
  • 23
    • 61349174704 scopus 로고    scopus 로고
    • Robust higher order potentials for enforcing label consistency
    • P. Kohli, P. H. Torr, et al. Robust higher order potentials for enforcing label consistency. IJCV, 82(3):302-324, 2009.
    • (2009) IJCV , vol.82 , Issue.3 , pp. 302-324
    • Kohli, P.1    Torr, P.H.2
  • 24
    • 85083952789 scopus 로고    scopus 로고
    • Pushing the boundaries of boundary detection using deep learning
    • I. Kokkinos. Pushing the boundaries of boundary detection using deep learning. In ICLR, 2016.
    • (2016) ICLR
    • Kokkinos, I.1
  • 25
    • 0037252843 scopus 로고    scopus 로고
    • Statistical edge detection: Learning and evaluating edge cues
    • S. Konishi, A. L. Yuille, J. M. Coughlan, and S. C. Zhu. Statistical edge detection: Learning and evaluating edge cues. PAMI, 25(1):57-74, 2003.
    • (2003) PAMI , vol.25 , Issue.1 , pp. 57-74
    • Konishi, S.1    Yuille, A.L.2    Coughlan, J.M.3    Zhu, S.C.4
  • 26
    • 85162351107 scopus 로고    scopus 로고
    • Efficient inference in fully connected crfs with Gaussian edge potentials
    • P. Krähenbühl and V. Koltun. Efficient inference in fully connected crfs with Gaussian edge potentials. In NIPS, 2011.
    • (2011) NIPS
    • Krähenbühl, P.1    Koltun, V.2
  • 29
    • 85009931853 scopus 로고    scopus 로고
    • Microsoft COCO: Common objects in context
    • T.-Y. Lin et al. Microsoft COCO: Common objects in context. In ECCV, 2014.
    • (2014) ECCV
    • Lin, T.-Y.1
  • 30
    • 84973860883 scopus 로고    scopus 로고
    • Semantic image segmentation via deep parsing network
    • Z. Liu, X. Li, P. Luo, C. C. Loy, and X. Tang. Semantic image segmentation via deep parsing network. In ICCV, 2015.
    • (2015) ICCV
    • Liu, Z.1    Li, X.2    Luo, P.3    Loy, C.C.4    Tang, X.5
  • 31
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 32
    • 84959207702 scopus 로고    scopus 로고
    • Feedforward semantic segmentation with zoom-out features
    • M. Mostajabi, P. Yadollahpour, and G. Shakhnarovich. Feedforward semantic segmentation with zoom-out features. In CVPR, 2015.
    • (2015) CVPR
    • Mostajabi, M.1    Yadollahpour, P.2    Shakhnarovich, G.3
  • 33
    • 84973879016 scopus 로고    scopus 로고
    • Learning deconvolution network for semantic segmentation
    • H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation. In ICCV, 2015.
    • (2015) ICCV
    • Noh, H.1    Hong, S.2    Han, B.3
  • 34
    • 84965124068 scopus 로고    scopus 로고
    • Weakly-and semi-supervised learning of a dcnn for semantic image segmentation
    • G. Papandreou, L.-C. Chen, K. Murphy, and A. L. Yuille. Weakly-and semi-supervised learning of a dcnn for semantic image segmentation. In ICCV, 2015.
    • (2015) ICCV
    • Papandreou, G.1    Chen, L.-C.2    Murphy, K.3    Yuille, A.L.4
  • 35
    • 84919790220 scopus 로고    scopus 로고
    • Recurrent convolutional neural networks for scene labeling
    • P. Pinheiro and R. Collobert. Recurrent convolutional neural networks for scene labeling. In ICML, 2014.
    • (2014) ICML
    • Pinheiro, P.1    Collobert, R.2
  • 37
    • 84946037134 scopus 로고    scopus 로고
    • Convolutional, long short-term memory, fully connected deep neural networks
    • T. N. Sainath, O. Vinyals, A. Senior, and H. Sak. Convolutional, long short-term memory, fully connected deep neural networks. In ICASSP, 2015.
    • (2015) ICASSP
    • Sainath, T.N.1    Vinyals, O.2    Senior, A.3    Sak, H.4
  • 39
    • 84944761614 scopus 로고    scopus 로고
    • Deepcontour: A deep convolutional feature learned by positive-sharing loss for contour detection
    • W. Shen, X. Wang, Y. Wang, X. Bai, and Z. Zhang. Deepcontour: A deep convolutional feature learned by positive-sharing loss for contour detection. In CVPR, 2015.
    • (2015) CVPR
    • Shen, W.1    Wang, X.2    Wang, Y.3    Bai, X.4    Zhang, Z.5
  • 40
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 41
    • 84877789646 scopus 로고    scopus 로고
    • Convolutional-recursive deep learning for 3d object classification
    • R. Socher, B. Huval, B. Bath, C. D. Manning, and A. Y. Ng. Convolutional-recursive deep learning for 3d object classification. In NIPS, 2012.
    • (2012) NIPS
    • Socher, R.1    Huval, B.2    Bath, B.3    Manning, C.D.4    Ng, A.Y.5
  • 42
    • 84920255614 scopus 로고    scopus 로고
    • Filter-based meanfield inference for random fields with higher-order terms and product label-spaces
    • V. Vineet, J. Warrell, and P. H. Torr. Filter-based meanfield inference for random fields with higher-order terms and product label-spaces. IJCV, 110(3):290-307, 2014.
    • (2014) IJCV , vol.110 , Issue.3 , pp. 290-307
    • Vineet, V.1    Warrell, J.2    Torr, P.H.3
  • 44
    • 84973859794 scopus 로고    scopus 로고
    • Holistically-nested edge detection
    • S. Xie and Z. Tu. Holistically-nested edge detection. In ICCV, 2015.
    • (2015) ICCV
    • Xie, S.1    Tu, Z.2
  • 45
    • 84856686379 scopus 로고    scopus 로고
    • Adaptive deconvolutional networks for mid and high level feature learning
    • M. D. Zeiler, G. W. Taylor, and R. Fergus. Adaptive deconvolutional networks for mid and high level feature learning. In ICCV, 2011.
    • (2011) ICCV
    • Zeiler, M.D.1    Taylor, G.W.2    Fergus, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.