-
1
-
-
79953048649
-
Contour detection and hierarchical image segmentation
-
May
-
P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. PAMI, 33(5):898-916, May 2011.
-
(2011)
PAMI
, vol.33
, Issue.5
, pp. 898-916
-
-
Arbelaez, P.1
Maire, M.2
Fowlkes, C.3
Malik, J.4
-
2
-
-
84959231756
-
Deepedge: A multiscale bifurcated deep network for top-down contour detection
-
G. Bertasius, J. Shi, and L. Torresani. Deepedge: A multiscale bifurcated deep network for top-down contour detection. In CVPR, 2015.
-
(2015)
CVPR
-
-
Bertasius, G.1
Shi, J.2
Torresani, L.3
-
3
-
-
84973888826
-
High-for-low and low-for-high: Efficient boundary detection from deep object features and its applications to high-level vision
-
G. Bertasius, J. Shi, and L. Torresani. High-for-low and low-for-high: Efficient boundary detection from deep object features and its applications to high-level vision. In ICCV, 2015.
-
(2015)
ICCV
-
-
Bertasius, G.1
Shi, J.2
Torresani, L.3
-
5
-
-
85083954148
-
Semantic image segmentation with deep convolutional nets and fully connected crfs
-
L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. In ICLR, 2015.
-
(2015)
ICLR
-
-
Chen, L.-C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
7
-
-
84986290525
-
-
arXiv:1511.03339
-
L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille. Attention to scale: Scale-aware semantic image segmentation. arXiv:1511.03339, 2015.
-
(2015)
Attention to Scale: Scale-aware Semantic Image Segmentation
-
-
Chen, L.-C.1
Yang, Y.2
Wang, J.3
Xu, W.4
Yuille, A.L.5
-
10
-
-
84973890848
-
Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation
-
J. Dai, K. He, and J. Sun. Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In ICCV, 2015.
-
(2015)
ICCV
-
-
Dai, J.1
He, K.2
Sun, J.3
-
11
-
-
84898820142
-
Structured forests for fast edge detection
-
P. Dollár and C. L. Zitnick. Structured forests for fast edge detection. In ICCV, 2013.
-
(2013)
ICCV
-
-
Dollár, P.1
Zitnick, C.L.2
-
12
-
-
26444565569
-
Finding structure in time
-
J. L. Elman. Finding structure in time. Cognitive science, 14(2):179-211, 1990.
-
(1990)
Cognitive Science
, vol.14
, Issue.2
, pp. 179-211
-
-
Elman, J.L.1
-
13
-
-
84952007662
-
The pascal visual object classes challenge a retrospective
-
M. Everingham, S. M. A. Eslami, L. V. Gool, C. K. I. Williams, J. Winn, and A. Zisserma. The pascal visual object classes challenge a retrospective. IJCV, 2014.
-
(2014)
IJCV
-
-
Everingham, M.1
Eslami, S.M.A.2
Gool, L.V.3
Williams, C.K.I.4
Winn, J.5
Zisserma, A.6
-
15
-
-
84959181749
-
N-4-fields: Neural network nearest neighbor fields for image transforms
-
Y. Ganin and V. Lempitsky. N-4-fields: Neural network nearest neighbor fields for image transforms. In ACCV, 2014.
-
(2014)
ACCV
-
-
Ganin, Y.1
Lempitsky, V.2
-
16
-
-
84997572977
-
Domain transform for edge-aware image and video processing
-
E. S. L. Gastal and M. M. Oliveira. Domain transform for edge-aware image and video processing. In SIGGRAPH, 2011.
-
(2011)
SIGGRAPH
-
-
Gastal, E.S.L.1
Oliveira, M.M.2
-
17
-
-
71249112130
-
Offline handwriting recognition with multidimensional recurrent neural networks
-
A. Graves and J. Schmidhuber. Offline handwriting recognition with multidimensional recurrent neural networks. In NIPS, 2009.
-
(2009)
NIPS
-
-
Graves, A.1
Schmidhuber, J.2
-
18
-
-
84856686500
-
Semantic contours from inverse detectors
-
B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik. Semantic contours from inverse detectors. In ICCV, 2011.
-
(2011)
ICCV
-
-
Hariharan, B.1
Arbeláez, P.2
Bourdev, L.3
Maji, S.4
Malik, J.5
-
19
-
-
84959236250
-
Hypercolumns for object segmentation and fine-grained localization
-
B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hypercolumns for object segmentation and fine-grained localization. In CVPR, 2015.
-
(2015)
CVPR
-
-
Hariharan, B.1
Arbeláez, P.2
Girshick, R.3
Malik, J.4
-
21
-
-
85083952247
-
Pixel-wise deep learning for contour detection
-
J.-J. Hwang and T.-L. Liu. Pixel-wise deep learning for contour detection. In ICLR, 2015.
-
(2015)
ICLR
-
-
Hwang, J.-J.1
Liu, T.-L.2
-
23
-
-
61349174704
-
Robust higher order potentials for enforcing label consistency
-
P. Kohli, P. H. Torr, et al. Robust higher order potentials for enforcing label consistency. IJCV, 82(3):302-324, 2009.
-
(2009)
IJCV
, vol.82
, Issue.3
, pp. 302-324
-
-
Kohli, P.1
Torr, P.H.2
-
24
-
-
85083952789
-
Pushing the boundaries of boundary detection using deep learning
-
I. Kokkinos. Pushing the boundaries of boundary detection using deep learning. In ICLR, 2016.
-
(2016)
ICLR
-
-
Kokkinos, I.1
-
25
-
-
0037252843
-
Statistical edge detection: Learning and evaluating edge cues
-
S. Konishi, A. L. Yuille, J. M. Coughlan, and S. C. Zhu. Statistical edge detection: Learning and evaluating edge cues. PAMI, 25(1):57-74, 2003.
-
(2003)
PAMI
, vol.25
, Issue.1
, pp. 57-74
-
-
Konishi, S.1
Yuille, A.L.2
Coughlan, J.M.3
Zhu, S.C.4
-
26
-
-
85162351107
-
Efficient inference in fully connected crfs with Gaussian edge potentials
-
P. Krähenbühl and V. Koltun. Efficient inference in fully connected crfs with Gaussian edge potentials. In NIPS, 2011.
-
(2011)
NIPS
-
-
Krähenbühl, P.1
Koltun, V.2
-
27
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541-551, 1989.
-
(1989)
Neural Computation
, vol.1
, Issue.4
, pp. 541-551
-
-
LeCun, Y.1
Boser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
Jackel, L.D.7
-
29
-
-
85009931853
-
Microsoft COCO: Common objects in context
-
T.-Y. Lin et al. Microsoft COCO: Common objects in context. In ECCV, 2014.
-
(2014)
ECCV
-
-
Lin, T.-Y.1
-
30
-
-
84973860883
-
Semantic image segmentation via deep parsing network
-
Z. Liu, X. Li, P. Luo, C. C. Loy, and X. Tang. Semantic image segmentation via deep parsing network. In ICCV, 2015.
-
(2015)
ICCV
-
-
Liu, Z.1
Li, X.2
Luo, P.3
Loy, C.C.4
Tang, X.5
-
31
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
-
(2015)
CVPR
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
33
-
-
84973879016
-
Learning deconvolution network for semantic segmentation
-
H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation. In ICCV, 2015.
-
(2015)
ICCV
-
-
Noh, H.1
Hong, S.2
Han, B.3
-
34
-
-
84965124068
-
Weakly-and semi-supervised learning of a dcnn for semantic image segmentation
-
G. Papandreou, L.-C. Chen, K. Murphy, and A. L. Yuille. Weakly-and semi-supervised learning of a dcnn for semantic image segmentation. In ICCV, 2015.
-
(2015)
ICCV
-
-
Papandreou, G.1
Chen, L.-C.2
Murphy, K.3
Yuille, A.L.4
-
35
-
-
84919790220
-
Recurrent convolutional neural networks for scene labeling
-
P. Pinheiro and R. Collobert. Recurrent convolutional neural networks for scene labeling. In ICML, 2014.
-
(2014)
ICML
-
-
Pinheiro, P.1
Collobert, R.2
-
36
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. IJCV, 2015.
-
(2015)
IJCV
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
37
-
-
84946037134
-
Convolutional, long short-term memory, fully connected deep neural networks
-
T. N. Sainath, O. Vinyals, A. Senior, and H. Sak. Convolutional, long short-term memory, fully connected deep neural networks. In ICASSP, 2015.
-
(2015)
ICASSP
-
-
Sainath, T.N.1
Vinyals, O.2
Senior, A.3
Sak, H.4
-
39
-
-
84944761614
-
Deepcontour: A deep convolutional feature learned by positive-sharing loss for contour detection
-
W. Shen, X. Wang, Y. Wang, X. Bai, and Z. Zhang. Deepcontour: A deep convolutional feature learned by positive-sharing loss for contour detection. In CVPR, 2015.
-
(2015)
CVPR
-
-
Shen, W.1
Wang, X.2
Wang, Y.3
Bai, X.4
Zhang, Z.5
-
40
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
-
(2015)
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
41
-
-
84877789646
-
Convolutional-recursive deep learning for 3d object classification
-
R. Socher, B. Huval, B. Bath, C. D. Manning, and A. Y. Ng. Convolutional-recursive deep learning for 3d object classification. In NIPS, 2012.
-
(2012)
NIPS
-
-
Socher, R.1
Huval, B.2
Bath, B.3
Manning, C.D.4
Ng, A.Y.5
-
42
-
-
84920255614
-
Filter-based meanfield inference for random fields with higher-order terms and product label-spaces
-
V. Vineet, J. Warrell, and P. H. Torr. Filter-based meanfield inference for random fields with higher-order terms and product label-spaces. IJCV, 110(3):290-307, 2014.
-
(2014)
IJCV
, vol.110
, Issue.3
, pp. 290-307
-
-
Vineet, V.1
Warrell, J.2
Torr, P.H.3
-
43
-
-
84971668893
-
-
arXiv:1505.00393
-
F. Visin, K. Kastner, K. Cho, M. Matteucci, A. Courville, and Y. Bengio. Renet: A recurrent neural network based alternative to convolutional networks. arXiv:1505.00393, 2015.
-
(2015)
Renet: A Recurrent Neural Network Based Alternative to Convolutional Networks
-
-
Visin, F.1
Kastner, K.2
Cho, K.3
Matteucci, M.4
Courville, A.5
Bengio, Y.6
-
44
-
-
84973859794
-
Holistically-nested edge detection
-
S. Xie and Z. Tu. Holistically-nested edge detection. In ICCV, 2015.
-
(2015)
ICCV
-
-
Xie, S.1
Tu, Z.2
-
45
-
-
84856686379
-
Adaptive deconvolutional networks for mid and high level feature learning
-
M. D. Zeiler, G. W. Taylor, and R. Fergus. Adaptive deconvolutional networks for mid and high level feature learning. In ICCV, 2011.
-
(2011)
ICCV
-
-
Zeiler, M.D.1
Taylor, G.W.2
Fergus, R.3
-
46
-
-
84973861983
-
Conditional random fields as recurrent neural networks
-
S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. Torr. Conditional random fields as recurrent neural networks. In ICCV, 2015.
-
(2015)
ICCV
-
-
Zheng, S.1
Jayasumana, S.2
Romera-Paredes, B.3
Vineet, V.4
Su, Z.5
Du, D.6
Huang, C.7
Torr, P.8
|