-
1
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition
-
G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, Deep Neural Networks for Acoustic Modeling in Speech Recognition, IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82-97, 2012
-
(2012)
IEEE Signal Processing Magazine
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
Dahl, G.4
Mohamed, A.5
Jaitly, N.6
Senior, A.7
Vanhoucke, V.8
Nguyen, P.9
Sainath, T.N.10
Kingsbury, B.11
-
2
-
-
84890525984
-
Deep convolutional neural networks for LVCSR
-
T. N. Sainath, A. Mohamed, B. Kingsbury, and B. Ramabhadran, Deep Convolutional Neural Networks for LVCSR, in Proc. ICASSP, 2013
-
(2013)
Proc. ICASSP
-
-
Sainath, T.N.1
Mohamed, A.2
Kingsbury, B.3
Ramabhadran, B.4
-
3
-
-
84910046405
-
Long short-term memory recurrent neural network architectures for large scale acoustic modeling
-
H. Sak, A. Senior, and F. Beaufays, Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic Modeling, in Proc. Interspeech, 2014
-
(2014)
Proc. Interspeech
-
-
Sak, H.1
Senior, A.2
Beaufays, F.3
-
4
-
-
85083951919
-
How to construct deep recurrent neural networks
-
R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, How to Construct Deep Recurrent Neural Networks, in Proc. ICLR, 2014
-
(2014)
Proc. ICLR
-
-
Pascanu, R.1
Gulcehre, C.2
Cho, K.3
Bengio, Y.4
-
5
-
-
84867585919
-
Understanding how deep belief networks perform acoustic modelling
-
A. Mohamed, G. Hinton, and G. Penn, Understanding how Deep Belief Networks Perform Acoustic Modelling, in ICASSP, 2012
-
(2012)
ICASSP
-
-
Mohamed, A.1
Hinton, G.2
Penn, G.3
-
7
-
-
84946017661
-
Exemplar-based sparse representation features: From TIMIT to LVCSR
-
T. N. Sainath, B. Ramabhadran, M. Picheny, D. Nahamoo, and D. Kanevsky, Exemplar-Based Sparse Representation Features: From TIMIT to LVCSR, in IEEE TSAP, 2011
-
(2011)
IEEE TSAP
-
-
Sainath, T.N.1
Ramabhadran, B.2
Picheny, M.3
Nahamoo, D.4
Kanevsky, D.5
-
8
-
-
84910072497
-
Unfolded recurrent neural networks for speech recognition
-
G. Saon, H. Soltau, A. Emami, and M. Picheny, Unfolded Recurrent Neural Networks for Speech Recognition, in Interspeech, 2014
-
(2014)
Interspeech
-
-
Saon, G.1
Soltau, H.2
Emami, A.3
Picheny, M.4
-
9
-
-
84910048046
-
Ensemble deep learning for speech recognition
-
L. Deng and J. Platt, Ensemble Deep Learning for Speech Recognition, in Proc. Interspeech, 2014
-
(2014)
Proc. Interspeech
-
-
Deng, L.1
Platt, J.2
-
10
-
-
80054736963
-
Traffic sign recognition with multi-scale convolutional networks
-
P. Sermanet and Y. LeCun, Traffic sign recognition with multi-scale convolutional networks, in Proc. IJCNN, 2011
-
(2011)
Proc. IJCNN
-
-
Sermanet, P.1
LeCun, Y.2
-
11
-
-
84893654379
-
Improvements to deep convolutional neural networks for LVCSR
-
T. N. Sainath, B. Kingsbury, A. Mohamed, G. Dahl, G. Saon, H. Soltau, T. Beran, A. Aravkin, and B. Ramabhadran, Improvements to Deep Convolutional Neural Networks for LVCSR, in in Proc. ASRU, 2013
-
(2013)
Proc. ASRU
-
-
Sainath, T.N.1
Kingsbury, B.2
Mohamed, A.3
Dahl, G.4
Saon, G.5
Soltau, H.6
Beran, T.7
Aravkin, A.8
Ramabhadran, B.9
-
12
-
-
84910098075
-
Deep scattering spectra with deep neural networks for LVCSR tasks
-
T. N. Sainath, V. Peddinti, B. Kingsbury, P. Fousek, D. Nahamoo, and B. Ramabhadhran, Deep Scattering Spectra with Deep Neural Networks for LVCSR Tasks, in Proc. Interspeech, 2014
-
(2014)
Proc. Interspeech
-
-
Sainath, T.N.1
Peddinti, V.2
Kingsbury, B.3
Fousek, P.4
Nahamoo, D.5
Ramabhadhran, B.6
-
13
-
-
33947620115
-
Hierarchical structures of neural networks for phoneme recognition
-
P. Schwarz, P. Matejka, and J. Cernocky, Hierarchical Structures of Neural Networks for Phoneme Recognition, in Proc. ICASSP, 2006
-
(2006)
Proc. ICASSP
-
-
Schwarz, P.1
Matejka, P.2
Cernocky, J.3
-
14
-
-
84893642011
-
Semi-supervised bootstrapping approach for neural network feature extractor training
-
F. Grezl and M. Karafat, Semi-Supervised Bootstrapping Approach for Neural Network Feature Extractor Training, in Proc. ASRU, 2013
-
(2013)
Proc. ASRU
-
-
Grezl, F.1
Karafat, M.2
-
15
-
-
84905265980
-
Joint training of convolutional and non-convolutional neural networks
-
H. Soltau, G. Saon, and T. N. Sainath, Joint Training of Convolutional and Non-Convolutional Neural Networks, in in Proc. ICASSP, 2014
-
(2014)
Proc. ICASSP
-
-
Soltau, H.1
Saon, G.2
Sainath, T.N.3
-
16
-
-
84877760312
-
Large scale distributed deep networks
-
J. Dean, G.S. Corrado, R. Monga, K. Chen, M. Devin, Q.V. Le, M.Z. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A.Y. Ng, Large Scale Distributed Deep Networks, in Proc. NIPS, 2012
-
(2012)
Proc. NIPS
-
-
Dean, J.1
Corrado, G.S.2
Monga, R.3
Chen, K.4
Devin, M.5
Le, Q.V.6
Mao, M.Z.7
Ranzato, M.8
Senior, A.9
Tucker, P.10
Yang, K.11
Ng, A.Y.12
-
17
-
-
84905252022
-
Asynchronous stochastic optimization for sequence training of deep neural networks
-
G. Heigold, E. McDermott, V. Vanhoucke, A. Senior, and M. Bacchiani, Asynchronous Stochastic Optimization for Sequence Training of Deep Neural Networks, in Proc. ICASSP, 2014
-
(2014)
Proc. ICASSP
-
-
Heigold, G.1
McDermott, E.2
Vanhoucke, V.3
Senior, A.4
Bacchiani, M.5
-
18
-
-
84946081380
-
Understanding the difficulty of training deep feedforward neural networks
-
X. Glorot and Y. Bengio, Understanding the Difficulty of Training Deep Feedforward Neural Networks, in Proc. AISTATS, 2014
-
(2014)
Proc. AISTATS
-
-
Glorot, X.1
Bengio, Y.2
-
19
-
-
84897497795
-
On the difficulty of training recurrent neural networks
-
R. Pascanu, T. Mikolov, and Y. Bengio, On the Difficulty of Training Recurrent Neural Networks, in Proc. ICML, 2013
-
(2013)
Proc. ICML
-
-
Pascanu, R.1
Mikolov, T.2
Bengio, Y.3
-
20
-
-
70349213445
-
Lattice-based optimization of sequence classification criteria for neural-network acoustic modeling
-
B. Kingsbury, Lattice-Based Optimization of Sequence Classification Criteria for Neural-Network Acoustic Modeling, in Proc. ICASSP, 2009
-
(2009)
Proc. ICASSP
-
-
Kingsbury, B.1
|