메뉴 건너뛰기




Volumn 2015-August, Issue , 2015, Pages 4580-4584

Convolutional, Long Short-Term Memory, fully connected Deep Neural Networks

Author keywords

[No Author keywords available]

Indexed keywords

AUDIO SIGNAL PROCESSING; BRAIN; CONVOLUTION; DEEP NEURAL NETWORKS; MEMORY ARCHITECTURE; NETWORK ARCHITECTURE; SPEECH COMMUNICATION; SPEECH RECOGNITION;

EID: 84946037134     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.2015.7178838     Document Type: Conference Paper
Times cited : (1545)

References (20)
  • 3
    • 84910046405 scopus 로고    scopus 로고
    • Long short-term memory recurrent neural network architectures for large scale acoustic modeling
    • H. Sak, A. Senior, and F. Beaufays, Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic Modeling, in Proc. Interspeech, 2014
    • (2014) Proc. Interspeech
    • Sak, H.1    Senior, A.2    Beaufays, F.3
  • 5
    • 84867585919 scopus 로고    scopus 로고
    • Understanding how deep belief networks perform acoustic modelling
    • A. Mohamed, G. Hinton, and G. Penn, Understanding how Deep Belief Networks Perform Acoustic Modelling, in ICASSP, 2012
    • (2012) ICASSP
    • Mohamed, A.1    Hinton, G.2    Penn, G.3
  • 8
    • 84910072497 scopus 로고    scopus 로고
    • Unfolded recurrent neural networks for speech recognition
    • G. Saon, H. Soltau, A. Emami, and M. Picheny, Unfolded Recurrent Neural Networks for Speech Recognition, in Interspeech, 2014
    • (2014) Interspeech
    • Saon, G.1    Soltau, H.2    Emami, A.3    Picheny, M.4
  • 9
    • 84910048046 scopus 로고    scopus 로고
    • Ensemble deep learning for speech recognition
    • L. Deng and J. Platt, Ensemble Deep Learning for Speech Recognition, in Proc. Interspeech, 2014
    • (2014) Proc. Interspeech
    • Deng, L.1    Platt, J.2
  • 10
    • 80054736963 scopus 로고    scopus 로고
    • Traffic sign recognition with multi-scale convolutional networks
    • P. Sermanet and Y. LeCun, Traffic sign recognition with multi-scale convolutional networks, in Proc. IJCNN, 2011
    • (2011) Proc. IJCNN
    • Sermanet, P.1    LeCun, Y.2
  • 13
    • 33947620115 scopus 로고    scopus 로고
    • Hierarchical structures of neural networks for phoneme recognition
    • P. Schwarz, P. Matejka, and J. Cernocky, Hierarchical Structures of Neural Networks for Phoneme Recognition, in Proc. ICASSP, 2006
    • (2006) Proc. ICASSP
    • Schwarz, P.1    Matejka, P.2    Cernocky, J.3
  • 14
    • 84893642011 scopus 로고    scopus 로고
    • Semi-supervised bootstrapping approach for neural network feature extractor training
    • F. Grezl and M. Karafat, Semi-Supervised Bootstrapping Approach for Neural Network Feature Extractor Training, in Proc. ASRU, 2013
    • (2013) Proc. ASRU
    • Grezl, F.1    Karafat, M.2
  • 15
    • 84905265980 scopus 로고    scopus 로고
    • Joint training of convolutional and non-convolutional neural networks
    • H. Soltau, G. Saon, and T. N. Sainath, Joint Training of Convolutional and Non-Convolutional Neural Networks, in in Proc. ICASSP, 2014
    • (2014) Proc. ICASSP
    • Soltau, H.1    Saon, G.2    Sainath, T.N.3
  • 18
    • 84946081380 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • X. Glorot and Y. Bengio, Understanding the Difficulty of Training Deep Feedforward Neural Networks, in Proc. AISTATS, 2014
    • (2014) Proc. AISTATS
    • Glorot, X.1    Bengio, Y.2
  • 19
    • 84897497795 scopus 로고    scopus 로고
    • On the difficulty of training recurrent neural networks
    • R. Pascanu, T. Mikolov, and Y. Bengio, On the Difficulty of Training Recurrent Neural Networks, in Proc. ICML, 2013
    • (2013) Proc. ICML
    • Pascanu, R.1    Mikolov, T.2    Bengio, Y.3
  • 20
    • 70349213445 scopus 로고    scopus 로고
    • Lattice-based optimization of sequence classification criteria for neural-network acoustic modeling
    • B. Kingsbury, Lattice-Based Optimization of Sequence Classification Criteria for Neural-Network Acoustic Modeling, in Proc. ICASSP, 2009
    • (2009) Proc. ICASSP
    • Kingsbury, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.