-
1
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. Greedy Layer-Wise Training of Deep Networks. In Proc. NIPS, 2007.
-
(2007)
Proc. NIPS
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
2
-
-
0030648914
-
Global training of document processing systems using graph transformer networks
-
Bottou, L., Bengio, Y., and LeCun, Y. Global training of document processing systems using graph transformer networks. In Proc. CVPR, 1997.
-
(1997)
Proc. CVPR
-
-
Bottou, L.1
Bengio, Y.2
LeCun, Y.3
-
3
-
-
0001699291
-
Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters
-
Bridle, J. S. Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters. In Proc. NIPS, 1990.
-
(1990)
Proc. NIPS
-
-
Bridle, J.S.1
-
4
-
-
85083954148
-
Semantic image segmentation with deep convolutional nets and fully connected CRFs
-
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. In Proc. ICLR, 2015.
-
(2015)
Proc. ICLR
-
-
Chen, L.-C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
5
-
-
80053558787
-
Natural language processing (almost) from scratch
-
Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. Natural language processing (almost) from scratch. JMLR, 2011.
-
(2011)
JMLR
-
-
Collobert, R.1
Weston, J.2
Bottou, L.3
Karlen, M.4
Kavukcuoglu, K.5
Kuksa, P.6
-
7
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proc. CVPR, 2009.
-
(2009)
Proc. CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
8
-
-
84925408575
-
Large-scale object classification using label relation graphs
-
Deng, J., Ding, N., Jia, Y., Frome, A., Murphy, K., Bengio, S., Li, Y., Neven, H., and Adam, H. Large-Scale Object Classification using Label Relation Graphs. In Proc. ECCV, 2014.
-
(2014)
Proc. ECCV
-
-
Deng, J.1
Ding, N.2
Jia, Y.3
Frome, A.4
Murphy, K.5
Bengio, S.6
Li, Y.7
Neven, H.8
Adam, H.9
-
10
-
-
84898956042
-
Structured learning via logistic regression
-
Domke, J. Structured Learning via Logistic Regression. In Proc. NIPS, 2013.
-
(2013)
Proc. NIPS
-
-
Domke, J.1
-
11
-
-
85083953781
-
Understanding deep architectures using a recursive convolutional network
-
Eigen, D., Rolfe, J., Fergus, R., and LeCun, Y. Understanding Deep Architectures using a Recursive Convolutional Network. In Proc. ICLR, 2014.
-
(2014)
Proc. ICLR
-
-
Eigen, D.1
Rolfe, J.2
Fergus, R.3
LeCun, Y.4
-
12
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
Girshick, R., Donahue, J., Darrell, T., and Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proc. CVPR, 2014.
-
(2014)
Proc. CVPR
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
13
-
-
84875745284
-
Fixing max-product: Convergent message passing algorithms for MAP LP-relaxations
-
Globerson, A. and Jaakkola, T. Fixing max-product: Convergent message passing algorithms for MAP LP-relaxations. In Proc. NIPS, 2007.
-
(2007)
Proc. NIPS
-
-
Globerson, A.1
Jaakkola, T.2
-
14
-
-
84924807123
-
Simultaneous detection and segmentation
-
Hariharan, B., Arbelaez, P., Girshick, R., and Malik, J. Simultaneous detection and segmentation. In Proc. ECCV, 2014.
-
(2014)
Proc. ECCV
-
-
Hariharan, B.1
Arbelaez, P.2
Girshick, R.3
Malik, J.4
-
15
-
-
78649384136
-
Norm-product belief propagation: Primal-dual message-passing for LP-relaxation and approximate-inference
-
Hazan, T. and Shashua, A. Norm-Product Belief Propagation: Primal-Dual Message-Passing for LP-Relaxation and Approximate-Inference. Trans. Information Theory, 2010.
-
(2010)
Trans. Information Theory
-
-
Hazan, T.1
Shashua, A.2
-
16
-
-
85162009902
-
A primal-dual message-passing algorithm for approximated large scale structured prediction
-
Hazan, T. and Urtasun, R. A Primal-Dual Message-Passing Algorithm for Approximated Large Scale Structured Prediction. In Proc. NIPS, 2010.
-
(2010)
Proc. NIPS
-
-
Hazan, T.1
Urtasun, R.2
-
17
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton, G. E. and Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science, 2006.
-
(2006)
Science
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
18
-
-
0004243089
-
-
Technical report, University of Toronto
-
Hinton, G. E., Sejnowski, T. J., and Ackley, D. H. Boltzmann Machines: Constraint Satisfaction Networks that Learn. Technical report, University of Toronto, 1984.
-
(1984)
Boltzmann Machines: Constraint Satisfaction Networks That Learn
-
-
Hinton, G.E.1
Sejnowski, T.J.2
Ackley, D.H.3
-
19
-
-
84866674114
-
Regression tree fields - an efficient, non-parametric approach to image labeling problems
-
Jancsary, J., Nowozin, S., Sharp, T., and Rother, C. Regression Tree Fields - An Efficient, Non-parametric Approach to Image Labeling Problems. In Proc. CVPR, 2012.
-
(2012)
Proc. CVPR
-
-
Jancsary, J.1
Nowozin, S.2
Sharp, T.3
Rother, C.4
-
20
-
-
84897567935
-
Learning convex QP relaxations for structured prediction
-
Jancsary, J., Nowozin, S., and Rother, C. Learning Convex QP Relaxations for Structured Prediction. In Proc. ICML, 2013.
-
(2013)
Proc. ICML
-
-
Jancsary, J.1
Nowozin, S.2
Rother, C.3
-
23
-
-
84889603377
-
Im-ageNet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., and Hinton, G. E. Im-ageNet Classification with Deep Convolutional Neural Networks. In Proc. NIPS, 2013.
-
(2013)
Proc. NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
24
-
-
50249093806
-
An empirical evaluation of deep architectures on problems with many factors of variation
-
Larochelle, H., Erhan, D., Courville, A., Bergstra, J., and Bengio, Y. An empirical evaluation of deep architectures on problems with many factors of variation. In Proc. ICML, 2007.
-
(2007)
Proc. ICML
-
-
Larochelle, H.1
Erhan, D.2
Courville, A.3
Bergstra, J.4
Bengio, Y.5
-
25
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998.
-
(1998)
Proceedings of the IEEE
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
26
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Proc. ICML, 2009.
-
(2009)
Proc. ICML
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
27
-
-
84919825360
-
High order regularization for semi-supervised learning of structured output problems
-
Li, Y. and Zemel, R. High Order Regularization for Semi-Supervised Learning of Structured Output Problems. In Proc. ICML, 2014.
-
(2014)
Proc. ICML
-
-
Li, Y.1
Zemel, R.2
-
28
-
-
84863519768
-
A conditional neural fields model for protein threading
-
Ma, J., Peng, J., Wang, S., and Xu, J. A conditional neural fields model for protein threading. Bioinformatics, 2012.
-
(2012)
Bioinformatics
-
-
Ma, J.1
Peng, J.2
Wang, S.3
Xu, J.4
-
29
-
-
80053164534
-
Convergent message passing algorithms: A unifying view
-
Meltzer, T., Globerson, A., and Weiss, Y. Convergent Message Passing Algorithms: a unifying view. In Proc. UAI, 2009.
-
(2009)
Proc. UAI
-
-
Meltzer, T.1
Globerson, A.2
Weiss, Y.3
-
30
-
-
77956556288
-
Learning efficiently with approximate inference via dual losses
-
Meshi, O., Sontag, D., Jaakkola, T., and Globerson, A. Learning Efficiently with Approximate inference via Dual Losses. In Proc. ICML, 2010.
-
(2010)
Proc. ICML
-
-
Meshi, O.1
Sontag, D.2
Jaakkola, T.3
Globerson, A.4
-
32
-
-
84856642791
-
Decision tree fields
-
Nowozin, S., Rother, C., Bagon, S., Sharp, T., Yao, B., and Kohli, P. Decision tree fields. In Proc. ICCV, 2011.
-
(2011)
Proc. ICCV
-
-
Nowozin, S.1
Rother, C.2
Bagon, S.3
Sharp, T.4
Yao, B.5
Kohli, P.6
-
35
-
-
78049406405
-
Backpropagation training for multilayer conditional random field based phone recognition
-
Prabhavalkar, R. and Fosler-Lussier, E. Backpropagation training for multilayer conditional random field based phone recognition. In Proc. ICASSP, 2010.
-
(2010)
Proc. ICASSP
-
-
Prabhavalkar, R.1
Fosler-Lussier, E.2
-
36
-
-
84874125782
-
An efficient learning procedure for deep boltzmann machines
-
Salakhutdinov, R. R. and Hinton, G. E. An Efficient Learning Procedure for Deep Boltzmann Machines. Neural Computation, 2012.
-
(2012)
Neural Computation
-
-
Salakhutdinov, R.R.1
Hinton, G.E.2
-
39
-
-
84867113207
-
Efficient structured prediction with latent variables for general graphical models
-
Schwing, A. G., Hazan, T., Pollefeys, M., and Urtasun, R. Efficient Structured Prediction with Latent Variables for General Graphical Models. In Proc. ICML, 2012.
-
(2012)
Proc. ICML
-
-
Schwing, A.G.1
Hazan, T.2
Pollefeys, M.3
Urtasun, R.4
-
40
-
-
84877789646
-
Convolutional-recursive deep learning for 3D object classification
-
Socher, R., Huval, B., Bhat, B., Manning, C. D., and Ng, A. Y. Convolutional-Recursive Deep Learning for 3D Object Classification. In Proc. NIPS, 2012.
-
(2012)
Proc. NIPS
-
-
Socher, R.1
Huval, B.2
Bhat, B.3
Manning, C.D.4
Ng, A.Y.5
-
41
-
-
84937907674
-
Tightening LP relaxations for MAP using message passing
-
Sontag, D., Meltzer, T., Globerson, A., and Jaakkola, T. Tightening LP Relaxations for MAP using Message Passing. In Proc. NIPS, 2008.
-
(2008)
Proc. NIPS
-
-
Sontag, D.1
Meltzer, T.2
Globerson, A.3
Jaakkola, T.4
-
42
-
-
31844442382
-
Learning structured prediction models: A large margin approach
-
Taskar, B., Chatalbashev, V., Koller, D., and Guestrin, C. Learning Structured Prediction Models: A Large Margin Approach. In Proc. ICML, 2005.
-
(2005)
Proc. ICML
-
-
Taskar, B.1
Chatalbashev, V.2
Koller, D.3
Guestrin, C.4
-
43
-
-
84930634156
-
Joint training of a convolutional network and a graphical model for human pose estimation
-
Tompson, J., Jain, A., LeCun, Y., and Bregler, C. Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation. In Proc. NIPS, 2014.
-
(2014)
Proc. NIPS
-
-
Tompson, J.1
Jain, A.2
LeCun, Y.3
Bregler, C.4
-
46
-
-
80053218745
-
MAP estimation, linear programming and belief propagation with convex free energies
-
Weiss, Y., Yanover, C., and Meltzer, T. MAP Estimation, Linear Programming and Belief Propagation with Convex Free Energies. In Proc. UAI, 2007.
-
(2007)
Proc. UAI
-
-
Weiss, Y.1
Yanover, C.2
Meltzer, T.3
-
48
-
-
84911404516
-
Tell me what you see and I will show you where it is
-
Xu, J., Schwing, A. G., and Urtasun, R. Tell me what you see and I will show you where it is. In Proc. CVPR, 2014.
-
(2014)
Proc. CVPR
-
-
Xu, J.1
Schwing, A.G.2
Urtasun, R.3
-
49
-
-
23744513375
-
Constructing free-energy approximations and generalized belief propagation algorithms
-
Yedidia, J. S., Freeman, W. T., and Weiss, Y. Constructing free-energy approximations and generalized belief propagation algorithms. Trans. Information Theory, 2005.
-
(2005)
Trans. Information Theory
-
-
Yedidia, J.S.1
Freeman, W.T.2
Weiss, Y.3
-
50
-
-
84921476116
-
Visualizing and understanding convolutional networks
-
Zeiler, M. D. and Fergus, R. Visualizing and Understanding Convolutional Networks. In Proc. ECCV, 2014.
-
(2014)
Proc. ECCV
-
-
Zeiler, M.D.1
Fergus, R.2
-
51
-
-
84937134364
-
-
Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang, C., and Torr, P. H. S. Conditional Random Fields as Recurrent Neural Networks. http://arxiv.org/abs/1502.03240, 2015.
-
(2015)
Conditional Random Fields As Recurrent Neural Networks
-
-
Zheng, S.1
Jayasumana, S.2
Romera-Paredes, B.3
Vineet, V.4
Su, Z.5
Du, D.6
Huang, C.7
Torr, P.H.S.8
|