메뉴 건너뛰기




Volumn 3, Issue January, 2014, Pages 1925-1933

Modeling deep temporal dependencies with recurrent "Grammar Cells"

Author keywords

[No Author keywords available]

Indexed keywords

INFORMATION SCIENCE; LINEAR TRANSFORMATIONS; MATHEMATICAL TRANSFORMATIONS; TIME SERIES;

EID: 84937955008     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (108)

References (22)
  • 4
    • 0000903748 scopus 로고
    • Generalization of backpropagation with application to a recurrent gas market model
    • P. J. Werbos. Generalization of backpropagation with application to a recurrent gas market model. Neural Networks, 1(4):339-356, 1988.
    • (1988) Neural Networks , vol.1 , Issue.4 , pp. 339-356
    • Werbos, P.J.1
  • 6
    • 0003575034 scopus 로고
    • diploma thesis, institut für informatik, lehrstuhl prof. brauer, technische universität münchen.
    • S. Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. diploma thesis, institut für informatik, lehrstuhl prof. brauer, technische universität münchen. 1991.
    • (1991) Untersuchungen Zu Dynamischen Neuronalen Netzen
    • Hochreiter, S.1
  • 8
    • 0001033889 scopus 로고
    • Learning complex, extended sequences using the principle of history compression
    • J. Schmidhuber. Learning complex, extended sequences using the principle of history compression. Neural Computation, 4(2):234-242, 1992.
    • (1992) Neural Computation , vol.4 , Issue.2 , pp. 234-242
    • Schmidhuber, J.1
  • 11
    • 84937906812 scopus 로고    scopus 로고
    • Diploma thesis. Master's thesis, Goethe-Universität Frankfurt, Frankfurt, Germany
    • V. Michalski. Neural networks for motion understanding: Diploma thesis. Master's thesis, Goethe-Universität Frankfurt, Frankfurt, Germany, 2013.
    • (2013) Neural Networks for Motion Understanding
    • Michalski, V.1
  • 12
    • 0000188120 scopus 로고
    • Learning invariance from transformation sequences
    • P. Földiák. Learning invariance from transformation sequences. Neural Computation, 3(2):194-200, 1991.
    • (1991) Neural Computation , vol.3 , Issue.2 , pp. 194-200
    • Földiák, P.1
  • 13
    • 0036546660 scopus 로고    scopus 로고
    • Slow feature analysis: Unsupervised learning of invariances
    • L. Wiskott and T. Sejnowski. Slow feature analysis: Unsupervised learning of invariances. Neural computation, 14(4):715-770, 2002.
    • (2002) Neural Computation , vol.14 , Issue.4 , pp. 715-770
    • Wiskott, L.1    Sejnowski, T.2
  • 15
    • 77953520240 scopus 로고    scopus 로고
    • Learning to represent spatial transformations with factored higher-order boltzmann machines
    • R. Memisevic and G. E. Hinton. Learning to represent spatial transformations with factored higher-order boltzmann machines. Neural Computation, 22(6):1473-1492, 2010.
    • (2010) Neural Computation , vol.22 , Issue.6 , pp. 1473-1492
    • Memisevic, R.1    Hinton, G.E.2
  • 18
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • July
    • D. Martin, Fowlkes C., D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the Eigth IEEE International Conference on Computer Vision, Volume 2, pages 416-423, July 2001.
    • (2001) Proceedings of the Eigth IEEE International Conference on Computer Vision , vol.2 , pp. 416-423
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 22
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • 2009. Also published as a book. Now Publishers
    • Y. Bengio. Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2(1):1-127, 2009. Also published as a book. Now Publishers, 2009.
    • (2009) Foundations and Trends in Machine Learning , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.