메뉴 건너뛰기




Volumn , Issue , 2011, Pages

Temporal relations in videos for unsupervised activity analysis

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVITY ANALYSIS; CONTINUOUS DATA; HUMAN BEHAVIORS; NOVEL PATTERNS; SLOW FEATURE ANALYSIS; TEMPORAL CONSISTENCY; TEMPORAL RELATION; TRAFFIC FLOW ANALYSIS;

EID: 84898450206     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.5244/C25.21     Document Type: Conference Paper
Times cited : (15)

References (22)
  • 1
    • 39549091484 scopus 로고    scopus 로고
    • Robust real-time unusual event detection using multiple fixed-location monitors
    • A. Adam, E. Rivlin, I. Shimshoni, and D. Reinitz. Robust real-time unusual event detection using multiple fixed-location monitors. PAMI, 30(3):555-560, 2008.
    • (2008) PAMI , vol.30 , Issue.3 , pp. 555-560
    • Adam, A.1    Rivlin, E.2    Shimshoni, I.3    Reinitz, D.4
  • 4
    • 85085175172 scopus 로고    scopus 로고
    • A Markov clustering topic model for mining behaviour in video
    • T. Hospedales, S. Gong, and T. Xiang. A Markov Clustering Topic Model for mining behaviour in video. In Proc. ICCV, 2009.
    • (2009) Proc. ICCV
    • Hospedales, T.1    Gong, S.2    Xiang, T.3
  • 6
    • 33746576905 scopus 로고    scopus 로고
    • A system for learning statistical motion patterns
    • W Hu, X. Xiao, Z. Fu, D. Xie, F.-T. Tan, and S. Maybank. A System for Learning Statistical Motion Patterns. PAMI, 28(9):1450-1464, 2006.
    • (2006) PAMI , vol.28 , Issue.9 , pp. 1450-1464
    • Hu, X.W.1    Xiao, Z.F.2    Xie, D.3    Tan, F.-T.4    Maybank, S.5
  • 7
    • 78649884554 scopus 로고    scopus 로고
    • Replacing supervised classification learning by slow feature analysis in spiking neural networks
    • S. Klampfl and W. Maass. Replacing supervised classification learning by Slow Feature Analysis in spiking neural networks. In NIPS, 2009.
    • (2009) NIPS
    • Klampfl, S.1    Maass, W.2
  • 8
    • 77956008040 scopus 로고    scopus 로고
    • What's going on? Discovering spatio-temporal dependencies in dynamic scenes
    • D. Kuettel, M. D. Breitenstein, L. Van Gool, and V. Ferrari. What's going on? Discovering spatio-temporal dependencies in dynamic scenes. In Proc. CVPR, 2010.
    • (2010) Proc. CVPR
    • Kuettel, D.1    Breitenstein, M.D.2    Van Gool, L.3    Ferrari, V.4
  • 9
    • 33645009307 scopus 로고    scopus 로고
    • A model of biological motion perception from configural form cues
    • J. Lange and M. Lappe. A model of biological motion perception from configural form cues. Journal of Neurosciences, 26:2894-2906, 2006.
    • (2006) Journal of Neurosciences , vol.26 , pp. 2894-2906
    • Lange, J.1    Lappe, M.2
  • 10
    • 33749990780 scopus 로고    scopus 로고
    • A survey of advances in vision-based human motion capture and analysis
    • ISSN 1077-3142
    • T. B. Moeslund, A. Hilton, and V. Krüger. A survey of advances in vision-based human motion capture and analysis. CVIU, 104(2):90-126, 2006. ISSN 1077-3142.
    • (2006) CVIU , vol.104 , Issue.2 , pp. 90-126
    • Moeslund, T.B.1    Hilton, A.2    Krüger, V.3
  • 11
    • 77955997506 scopus 로고    scopus 로고
    • Exploiting simple hierarchies for unsupervised human behavior analysis
    • F Nater, H. Grabner, and L. Van Gool. Exploiting Simple Hierarchies for Unsupervised Human Behavior Analysis. In Proc. CVPR, 2010.
    • (2010) Proc. CVPR
    • Nater, H.1    Grabner, F.2    Van Gool, L.3
  • 12
    • 45049084813 scopus 로고    scopus 로고
    • Unsupervised learning of human action categories using spatial-temporal words
    • J. C. Niebles, H. Wang, and L. Fei-Fei. Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words. IJCV, 79(3):299-318, 2008.
    • (2008) IJCV , vol.79 , Issue.3 , pp. 299-318
    • Niebles, J.C.1    Wang, H.2    Fei-Fei, L.3
  • 13
    • 80052874353 scopus 로고    scopus 로고
    • Modeling temporal structure of decomposable motion segments for activity classification
    • J. C. Niebles, C.-W. Chen, and L. Fei-Fei. Modeling Temporal Structure of Decomposable Motion Segments for Activity Classification. In Proc. ECCV, 2010.
    • (2010) Proc. ECCV
    • Niebles, J.C.1    Chen, C.-W.2    Fei-Fei, L.3
  • 14
    • 0034244889 scopus 로고    scopus 로고
    • Learning patterns of activity using real-time tracking
    • C. Stauffer and W. E. L. Grimson. Learning Patterns of Activity Using Real-Time Tracking. PAMI, 22(8):747-757, 2000.
    • (2000) PAMI , vol.22 , Issue.8 , pp. 747-757
    • Stauffer, C.1    Grimson, W.E.L.2
  • 15
    • 59349120959 scopus 로고    scopus 로고
    • Unsupervised view and rate invariant clustering of video sequences
    • P. Turaga, A. Veeraraghavan, and R. Chellappa. Unsupervised view and rate invariant clustering of video sequences. CVIU, 113(3):353-371, 2009.
    • (2009) CVIU , vol.113 , Issue.3 , pp. 353-371
    • Turaga, P.1    Veeraraghavan, A.2    Chellappa, R.3
  • 16
    • 33750031202 scopus 로고    scopus 로고
    • Temporal motion models for monocular and multiview 3D human body tracking
    • ISSN 1077-3142
    • R. Urtasun, D. J. Fleet, and P. Fua. Temporal motion models for monocular and multiview 3D human body tracking. CVIU, 104(2):157-177, 2006. ISSN 1077-3142.
    • (2006) CVIU , vol.104 , Issue.2 , pp. 157-177
    • Urtasun, R.1    Fleet, D.J.2    Fua, P.3
  • 18
    • 63849117955 scopus 로고    scopus 로고
    • Unsupervised activity perception in crowded and complicated scenes using hierarchical Bayesian models
    • X. Wang, X. Ma, and W. E. L. Grimson. Unsupervised Activity Perception in Crowded and Complicated Scenes Using Hierarchical Bayesian Models. PAMI, 31(3):539-555, 2009.
    • (2009) PAMI , vol.31 , Issue.3 , pp. 539-555
    • Wang, X.1    Ma, X.2    Grimson, W.E.L.3
  • 19
    • 84855184457 scopus 로고    scopus 로고
    • Beyond novelty detection: Incongruent events, when general and specific classifiers disagree
    • Daphna Weinshall, Hynek Hermansky, Alon Zweig, Jie Luo, Holly Jimison, Frank Ohl, and Misha Pavel. Beyond novelty detection: Incongruent events, when general and specific classifiers disagree. In NIPS, 2008.
    • (2008) NIPS
    • Weinshall, D.1    Hermansky, H.2    Zweig, A.3    Luo, J.4    Jimison, H.5    Ohl, F.6    Pavel, M.7
  • 20
    • 0041324871 scopus 로고    scopus 로고
    • Slow feature analysis: A theoretical analysis of optimal free responses
    • L. Wiskott. Slow Feature Analysis: A Theoretical Analysis of Optimal Free Responses. Neural Computation, 15(9):2147-2177, 2003.
    • (2003) Neural Computation , vol.15 , Issue.9 , pp. 2147-2177
    • Wiskott, L.1
  • 21
    • 0036546660 scopus 로고    scopus 로고
    • Slow feature analysis: Unsupervised learning of invariances
    • L. Wiskott and T. Sejnowski. Slow Feature Analysis: Unsupervised Learning of Invariances. Neural Computation, 14(4):715-770, 2002.
    • (2002) Neural Computation , vol.14 , Issue.4 , pp. 715-770
    • Wiskott, L.1    Sejnowski, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.