메뉴 건너뛰기




Volumn , Issue , 2016, Pages 1051-1060

Bridging the gap between stochastic gradient MCMC and stochastic optimization

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; DEEP NEURAL NETWORKS; MARKOV PROCESSES; MOMENTUM; MONTE CARLO METHODS; SIMULATED ANNEALING; STOCHASTIC SYSTEMS; TEMPERATURE;

EID: 84986265678     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (99)

References (39)
  • 1
    • 0013141758 scopus 로고    scopus 로고
    • Reversible jump mcmc simulated annealing for neural networks
    • C. Andrieu, N. de Freitas, and A. Doucet. Reversible jump mcmc simulated annealing for neural networks. In UAI, 2000.
    • (2000) UAI
    • Andrieu, C.1    de Freitas, N.2    Doucet, A.3
  • 3
    • 84904136037 scopus 로고    scopus 로고
    • Large-scale machine learning with stochastic gradient descent
    • L. Bottou. Large-scale machine learning with stochastic gradient descent. In Proc. COMPSTAT, 2010.
    • (2010) Proc. COMPSTAT
    • Bottou, L.1
  • 4
    • 84867129058 scopus 로고    scopus 로고
    • Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription
    • N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent. Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription. In ICML, 2012.
    • (2012) ICML
    • Boulanger-Lewandowski, N.1    Bengio, Y.2    Vincent, P.3
  • 6
    • 84965095225 scopus 로고    scopus 로고
    • On the convergence of stochastic gradient mcmc algorithms with high-order integrators
    • C. Chen, N. Ding, and L. Carin. On the convergence of stochastic gradient mcmc algorithms with high-order integrators. In NIPS, 2015.
    • (2015) NIPS
    • Chen, C.1    Ding, N.2    Carin, L.3
  • 7
    • 84919787787 scopus 로고    scopus 로고
    • Stochastic gradient hamiltonian monte carlo
    • T. Chen, E. B. Fox, and C. Guestrin. Stochastic gradient Hamiltonian Monte Carlo. In ICML, 2014.
    • (2014) ICML
    • Chen, T.1    Fox, E.B.2    Guestrin, C.3
  • 9
    • 84965117097 scopus 로고    scopus 로고
    • Equilibrated adaptive learning rates for non-convex optimization
    • Y. N. Dauphin, H. de Vries, and Y. Bengio. Equilibrated adaptive learning rates for non-convex optimization. In NIPS, 2015.
    • (2015) NIPS
    • Dauphin, Y.N.1    de Vries, H.2    Bengio, Y.3
  • 11
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive sub-gradient methods for online learning and stochastic optimization
    • J. Duchi, E. Hazan, and Y. Singer. Adaptive sub-gradient methods for online learning and stochastic optimization. In JMLR, 2011.
    • (2011) JMLR
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 12
    • 84970024465 scopus 로고    scopus 로고
    • Scalable deep poisson factor analysis for topic modeling
    • Z. Gan, C. Chen, R. Henao, D. Carlson, and L. Carin. Scalable deep Poisson factor analysis for topic modeling. In ICML, 2015.
    • (2015) ICML
    • Gan, Z.1    Chen, C.2    Henao, R.3    Carlson, D.4    Carin, L.5
  • 13
    • 0021518209 scopus 로고
    • Stochastic relaxation, gibbs distributions, and the bayesian restoration of images
    • S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. In PAMI, 1984.
    • (1984) PAMI
    • Geman, S.1    Geman, D.2
  • 14
    • 79952295497 scopus 로고    scopus 로고
    • Riemann manifold langevin and hamiltonian monte carlo methods
    • M. Girolami and B. Calderhead. Riemann manifold Langevin and Hamiltonian Monte Carlo methods. In JRSS, 2011.
    • (2011) JRSS
    • Girolami, M.1    Calderhead, B.2
  • 16
    • 77953183471 scopus 로고    scopus 로고
    • What is the best multi-stage architecture for object recognition?
    • K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. Le-Cun. What is the best multi-stage architecture for object recognition? In ICCV, 2009.
    • (2009) ICCV
    • Jarrett, K.1    Kavukcuoglu, K.2    Ranzato, M.3    Le-Cun, Y.4
  • 17
    • 85083951076 scopus 로고    scopus 로고
    • A method for stochastic optimization
    • D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
    • (2015) ICLR
    • Kingma, D.1    Adam, J.Ba.2
  • 18
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • C. D. G. Jr
    • S. Kirkpatrick, C. D. G. Jr, and M. P. Vecchi. Optimization by simulated annealing. In Science, 1983.
    • (1983) Science
    • Kirkpatrick, S.1    Vecchi, M.P.2
  • 19
    • 85007196088 scopus 로고    scopus 로고
    • Preconditioned stochastic gradient langevin dynamics for deep neural networks
    • C. Li, C. Chen, D. Carlson, and L. Carin. Preconditioned stochastic gradient Langevin dynamics for deep neural networks. In AAAI, 2016a.
    • (2016) AAAI
    • Li, C.1    Chen, C.2    Carlson, D.3    Carin, L.4
  • 20
    • 85007273869 scopus 로고    scopus 로고
    • High-order stochastic gradient thermostats for bayesian learning of deep models
    • C. Li, C. Chen, K. Fan, and L. Carin. High-order stochastic gradient thermostats for Bayesian learning of deep models. In AAAI, 2016b.
    • (2016) AAAI
    • Li, C.1    Chen, C.2    Fan, K.3    Carin, L.4
  • 22
  • 23
    • 77950857322 scopus 로고    scopus 로고
    • Construction of numerical time-average and stationary measures via poisson equations
    • J. C. Mattingly, A. M. Stuart, and M. V. Tretyakov. Construction of numerical time-average and stationary measures via Poisson equations. In SIAM J. NUMER. ANAL., 2010.
    • (2010) SIAM J. NUMER. ANAL.
    • Mattingly, J.C.1    Stuart, A.M.2    Tretyakov, M.V.3
  • 26
    • 85067545570 scopus 로고    scopus 로고
    • Scaling nonparametric bayesian inference via subsample-annealing
    • F. Obermeyer, J. Glidden, and E. Jonas. Scaling nonparametric bayesian inference via subsample-annealing. In AISTATS, 2014.
    • (2014) AISTATS
    • Obermeyer, F.1    Glidden, J.2    Jonas, E.3
  • 27
    • 84898939739 scopus 로고    scopus 로고
    • Stochastic gradient riemannian langevin dynamics on the probability simplex
    • S. Patterson and Y. W. Teh. Stochastic gradient Riemannian Langevin dynamics on the probability simplex. In NIPS, 2013.
    • (2013) NIPS
    • Patterson, S.1    Teh, Y.W.2
  • 29
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. In Nature, 1986.
    • (1986) Nature
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 31
    • 84897510162 scopus 로고    scopus 로고
    • On the importance of initialization and momentum in deep learning
    • I. Sutskever, J. Martens, G. Dahl, and G. E. Hinton. On the importance of initialization and momentum in deep learning. In ICML, 2013.
    • (2013) ICML
    • Sutskever, I.1    Martens, J.2    Dahl, G.3    Hinton, G.E.4
  • 35
    • 0021819411 scopus 로고
    • Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm
    • V. Černý. Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. In J. Optimization Theory and Applications, 1985.
    • (1985) J. Optimization Theory and Applications
    • Černý, V.1
  • 37
    • 80053452150 scopus 로고    scopus 로고
    • Bayesian learning via stochastic gradient langevin dynamics
    • M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient Langevin dynamics. In ICML, 2011.
    • (2011) ICML
    • Welling, M.1    Teh, Y.W.2
  • 38
    • 85083954484 scopus 로고    scopus 로고
    • Stochastic pooling for regularization of deep convolutional neural networks
    • M. Zeiler and R. Fergus. Stochastic pooling for regularization of deep convolutional neural networks. In ICLR, 2013.
    • (2013) ICLR
    • Zeiler, M.1    Fergus, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.