메뉴 건너뛰기




Volumn 3, Issue , 2015, Pages 1823-1832

Scalable deep Poisson factor analysis for topic modeling

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BINS; INFERENCE ENGINES; LEARNING SYSTEMS; MULTIVARIANT ANALYSIS; STOCHASTIC SYSTEMS;

EID: 84970024465     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (95)

References (40)
  • 3
    • 8644225400 scopus 로고    scopus 로고
    • Hierarchical topic models and the nested Chinese restaurant process
    • Blei, D. M., Griffiths, T., Jordan, M. I., and Tenenbaum, J. B. Hierarchical topic models and the nested Chinese restaurant process. NIPS, 2004.
    • (2004) NIPS
    • Blei, D.M.1    Griffiths, T.2    Jordan, M.I.3    Tenenbaum, J.B.4
  • 5
    • 84919787787 scopus 로고    scopus 로고
    • Stochastic gradient hamiltonian monte carlo
    • Chen, T., Fox, E., and Guestrin, C. Stochastic gradient Hamiltonian Monte Carlo. ICML, 2014.
    • (2014) ICML
    • Chen, T.1    Fox, E.2    Guestrin, C.3
  • 6
    • 84919796093 scopus 로고    scopus 로고
    • Stochastic back-propagation and approximate inference in deep generative models
    • Danilo, J. R., Shakir, M., and Daan, W. Stochastic back-propagation and approximate inference in deep generative models. ICML, 2014.
    • (2014) ICML
    • Danilo, J.R.1    Shakir, M.2    Daan, W.3
  • 8
    • 84965104862 scopus 로고    scopus 로고
    • Learning deep sigmoid belief networks with data augmentation
    • Gan, Z., Henao, R., Carlson, D., and Carin, L. Learning deep sigmoid belief networks with data augmentation. AISTATS, 2015.
    • (2015) AISTATS
    • Gan, Z.1    Henao, R.2    Carlson, D.3    Carin, L.4
  • 9
    • 79952295497 scopus 로고    scopus 로고
    • Riemann manifold langevin and hamiltonian monte carlo methods
    • Girolami, M. and Calderhead, B. Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. R. Statist. Soc. B, 2011.
    • (2011) J. R. Statist. Soc. B
    • Girolami, M.1    Calderhead, B.2
  • 11
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton, G. E. Training products of experts by minimizing contrastive divergence. Neural computation, 2002.
    • (2002) Neural Computation
    • Hinton, G.E.1
  • 12
    • 79961219393 scopus 로고    scopus 로고
    • Discovering binary codes for documents by learning deep generative models
    • Hinton, G. E. and Salakhutdinov, R. Discovering binary codes for documents by learning deep generative models. Topics in Cognitive Science, 2011.
    • (2011) Topics in Cognitive Science
    • Hinton, G.E.1    Salakhutdinov, R.2
  • 15
    • 85162005069 scopus 로고    scopus 로고
    • Online learning for latent dirichlet allocation
    • Hoffman, M. D., Blei, D. M., and Bach, F. Online learning for latent Dirichlet allocation. NIPS, 2010.
    • (2010) NIPS
    • Hoffman, M.D.1    Blei, D.M.2    Bach, F.3
  • 17
    • 85083952489 scopus 로고    scopus 로고
    • Auto-encoding variational bayes
    • Kingma, D. P. and Welling, M. Auto-encoding variational Bayes. ICLR, 2014.
    • (2014) ICLR
    • Kingma, D.P.1    Welling, M.2
  • 18
    • 84877761544 scopus 로고    scopus 로고
    • A neural autoregressive topic model
    • Larochelle, H. and Lauly, S. A neural autoregressive topic model. NIPS, 2012.
    • (2012) NIPS
    • Larochelle, H.1    Lauly, S.2
  • 19
    • 84937889303 scopus 로고    scopus 로고
    • Communication efficient distributed machine learning with the parameter server
    • Li, M., Andersen, D., Smola, A., and Yu, K. Communication efficient distributed machine learning with the parameter server. NIPS, 2014.
    • (2014) NIPS
    • Li, M.1    Andersen, D.2    Smola, A.3    Yu, K.4
  • 21
    • 84867121232 scopus 로고    scopus 로고
    • Sparse stochastic inference for latent dirichlet allocation
    • Mimno, D., Hoffman, M. D., and Blei, D. M. Sparse stochastic inference for latent Dirichlet allocation. ICML, 2012.
    • (2012) ICML
    • Mimno, D.1    Hoffman, M.D.2    Blei, D.M.3
  • 22
    • 84919786239 scopus 로고    scopus 로고
    • Neural variational inference and learning in belief networks
    • Mnih, A. and Gregor, K. Neural variational inference and learning in belief networks. ICML, 2014.
    • (2014) ICML
    • Mnih, A.1    Gregor, K.2
  • 23
    • 44049116681 scopus 로고
    • Connectionist learning of belief networks
    • Neal, R. M. Connectionist learning of belief networks. Artificial Intelligence, 1992.
    • (1992) Artificial Intelligence
    • Neal, R.M.1
  • 25
    • 84898939739 scopus 로고    scopus 로고
    • Stochastic gradient rie-mannian langevin dynamics on the probability simplex
    • Patterson, S. and Teh, Y. W. Stochastic gradient Rie-mannian Langevin dynamics on the probability simplex. NIPS, 2013.
    • (2013) NIPS
    • Patterson, S.1    Teh, Y.W.2
  • 26
    • 84858279402 scopus 로고    scopus 로고
    • Local shrinkage rules, lévy processes and regularized regression
    • Polson, N. G. and Scott, J. G. Local shrinkage rules, Lévy processes and regularized regression. J. R. Statist. Soc. B, 2012.
    • (2012) J. R. Statist. Soc. B
    • Polson, N.G.1    Scott, J.G.2
  • 27
    • 84884917671 scopus 로고    scopus 로고
    • Bayesian inference for logistic models using pólya-gamma latent variables
    • Polson, N. G., Scott, J. G., and Windle, J. Bayesian inference for logistic models using Pólya-Gamma latent variables. JASA, 2013.
    • (2013) JASA
    • Polson, N.G.1    Scott, J.G.2    Windle, J.3
  • 29
    • 77956556686 scopus 로고    scopus 로고
    • Replicated softmax: An undirected topic model
    • Salakhutdinov, R. and Hinton, G. E. Replicated softmax: an undirected topic model. NIPS, 2009a.
    • (2009) NIPS
    • Salakhutdinov, R.1    Hinton, G.E.2
  • 34
    • 84877762487 scopus 로고    scopus 로고
    • Truncation-free stochastic variational inference for Bayesian nonparametric models
    • Wang, C. and Blei, D. M. Truncation-free stochastic variational inference for Bayesian nonparametric models. NIPS, 2012.
    • (2012) NIPS
    • Wang, C.1    Blei, D.M.2
  • 35
    • 80053452150 scopus 로고    scopus 로고
    • Bayesian learning via stochastic gradient langevin dynamics
    • Welling, M. and Teh, Y. W. Bayesian learning via stochastic gradient Langevin dynamics. ICML, 2011.
    • (2011) ICML
    • Welling, M.1    Teh, Y.W.2
  • 36
    • 77956537774 scopus 로고    scopus 로고
    • The IBP compound dirichlet process and its application to focused topic modeling
    • Williamson, S., Wang, C., Heller, K., and Blei, D. M. The IBP compound Dirichlet process and its application to focused topic modeling. ICML, 2010.
    • (2010) ICML
    • Williamson, S.1    Wang, C.2    Heller, K.3    Blei, D.M.4
  • 37
    • 84899029362 scopus 로고    scopus 로고
    • The convergence of contrastive divergences
    • Yuille, A. The convergence of contrastive divergences. NIPS, 2005.
    • (2005) NIPS
    • Yuille, A.1
  • 38
    • 84877756924 scopus 로고    scopus 로고
    • Joint modeling of a matrix with associated text via latent binary features
    • Zhang, X. and Carin, L. Joint modeling of a matrix with associated text via latent binary features. NIPS, 2012.
    • (2012) NIPS
    • Zhang, X.1    Carin, L.2
  • 39
    • 84920998554 scopus 로고    scopus 로고
    • Negative binomial process count and mixture modeling
    • Zhou, M. and Carin, L. Negative binomial process count and mixture modeling. PAM1, 2015.
    • (2015) PAM1
    • Zhou, M.1    Carin, L.2
  • 40
    • 84866013303 scopus 로고    scopus 로고
    • Beta-negative binomial process and poisson factor analysis
    • Zhou, M., Hannah, L., Dunson, D., and Carin, L. Beta-negative binomial process and Poisson factor analysis. AISTATS, 2012.
    • (2012) AISTATS
    • Zhou, M.1    Hannah, L.2    Dunson, D.3    Carin, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.