메뉴 건너뛰기




Volumn , Issue , 2012, Pages 2376-2383

Regression Tree Fields An efficient, non-parametric approach to image labeling problems

Author keywords

[No Author keywords available]

Indexed keywords

CONDITIONAL RANDOM FIELD; DE-NOISING; ENERGY FUNCTIONS; EXPRESSIVE POWER; GAUSSIAN RANDOM FIELDS; IMAGE LABELING; INPAINTING; JOINT DETECTION; NON-PARAMETRIC REGRESSION; NONPARAMETRIC APPROACHES; ORDERS OF MAGNITUDE; PREDICTIVE PERFORMANCE; REGRESSION TREES; TRAINING DATA; VECTOR VALUED;

EID: 84866674114     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6247950     Document Type: Conference Paper
Times cited : (60)

References (23)
  • 2
    • 0017751656 scopus 로고
    • Efficiency of pseudolikelihood estimation for simple Gaussian fields
    • 4
    • J. Besag. Efficiency of pseudolikelihood estimation for simple Gaussian fields. Biometrica, (64):616-618, 1977. 4
    • (1977) Biometrica , Issue.64 , pp. 616-618
    • Besag, J.1
  • 3
    • 0034345420 scopus 로고    scopus 로고
    • Nonmonotone spectral projected gradient methods on convex sets
    • 4
    • E. G. Birgin, J. M. Martinez, and M. Raydan. Nonmonotone spectral projected gradient methods on convex sets. SIAM Journal of Optimization, 10(4):1196-1211, 2000. 4
    • (2000) SIAM Journal of Optimization , vol.10 , Issue.4 , pp. 1196-1211
    • Birgin, E.G.1    Martinez, J.M.2    Raydan, M.3
  • 8
    • 84866658616 scopus 로고    scopus 로고
    • Robust trajectory-space TV-L1 optical flow for non-rigid sequences
    • 7
    • R. Garg, A. Roussos, and L. Agapito. Robust trajectory-space TV-L1 optical flow for non-rigid sequences. In EMMCVPR, 2011. 7
    • (2011) EMMCVPR
    • Garg, R.1    Roussos, A.2    Agapito, L.3
  • 9
    • 0000379660 scopus 로고
    • Computing a nearest symmetric positive semidefinite matrix
    • 4
    • N. J. Higham. Computing a nearest symmetric positive semidefinite matrix. Linear algebra and its applications, 103, 1988. 4
    • (1988) Linear Algebra and Its Applications , vol.103
    • Higham, N.J.1
  • 11
    • 70449621223 scopus 로고    scopus 로고
    • The MIR Flickr retrieval evaluation
    • ACM, 7
    • M. J. Huiskes and M. S. Lew. The MIR Flickr retrieval evaluation. In MIR 2008. ACM, 2008. 7
    • (2008) MIR 2008
    • Huiskes, M.J.1    Lew, M.S.2
  • 13
    • 12844287465 scopus 로고    scopus 로고
    • Colorization using optimization
    • 7
    • A. Levin, D. Lischinski, and Y. Weiss. Colorization using optimization. ACM Trans. Graph, 23(3):689-694, 2004. 7
    • (2004) ACM Trans. Graph , vol.23 , Issue.3 , pp. 689-694
    • Levin, A.1    Lischinski, D.2    Weiss, Y.3
  • 16
    • 70450207702 scopus 로고    scopus 로고
    • Learning optimized MAP estimates in continuously-valued MRF models
    • 1, 2
    • K. G. G. Samuel and M. F. Tappen. Learning optimized MAP estimates in continuously-valued MRF models. In CVPR, 2009. 1, 2
    • (2009) CVPR
    • Samuel, K.G.G.1    Tappen, M.F.2
  • 17
    • 77955995598 scopus 로고    scopus 로고
    • Optimizing costly functions with simple constraints: A limited-memory projected quasi-Newton algorithm
    • 4
    • M. Schmidt, E. van den Berg, M. Friedlander, and K. Murphy. Optimizing costly functions with simple constraints: A limited-memory projected quasi-Newton algorithm. In AISTATS, 2009. 4
    • (2009) AISTATS
    • Schmidt, M.1    Berg Den E.Van2    Friedlander, M.3    Murphy, K.4
  • 18
    • 77955989583 scopus 로고    scopus 로고
    • A generative perspective on MRFs in low-level vision
    • 2, 6, 7
    • U. Schmidt, Q. Gao, and S. Roth. A generative perspective on MRFs in low-level vision. In CVPR, 2010. 2, 6, 7
    • (2010) CVPR
    • Schmidt, U.1    Gao, Q.2    Roth, S.3
  • 21
    • 34948821220 scopus 로고    scopus 로고
    • Learning Gaussian conditional random fields for low-level vision
    • 1, 2, 7
    • M. Tappen, C. Liu, E. H. Adelson, and W. T. Freeman. Learning Gaussian conditional random fields for low-level vision. In CVPR, 2007. 1, 2, 7
    • (2007) CVPR
    • Tappen, M.1    Liu, C.2    Adelson, E.H.3    Freeman, W.T.4
  • 22
    • 51949118679 scopus 로고    scopus 로고
    • The logistic random field - A convenient graphical model for learning parameters for MRF-based labeling
    • 1
    • M. F. Tappen, K. G. G. Samuel, C. V. Dean, and D. Lyle. The logistic random field - a convenient graphical model for learning parameters for MRF-based labeling. In CVPR, 2008. 1
    • (2008) CVPR
    • Tappen, M.F.1    Samuel, K.G.G.2    Dean, C.V.3    Lyle, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.