-
1
-
-
79953048649
-
Contour detection and hierarchical image segmentation
-
6
-
P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell, 33(5), 2011. 6
-
(2011)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.33
, Issue.5
-
-
Arbelaez, P.1
Maire, M.2
Fowlkes, C.3
Malik, J.4
-
2
-
-
0017751656
-
Efficiency of pseudolikelihood estimation for simple Gaussian fields
-
4
-
J. Besag. Efficiency of pseudolikelihood estimation for simple Gaussian fields. Biometrica, (64):616-618, 1977. 4
-
(1977)
Biometrica
, Issue.64
, pp. 616-618
-
-
Besag, J.1
-
3
-
-
0034345420
-
Nonmonotone spectral projected gradient methods on convex sets
-
4
-
E. G. Birgin, J. M. Martinez, and M. Raydan. Nonmonotone spectral projected gradient methods on convex sets. SIAM Journal of Optimization, 10(4):1196-1211, 2000. 4
-
(2000)
SIAM Journal of Optimization
, vol.10
, Issue.4
, pp. 1196-1211
-
-
Birgin, E.G.1
Martinez, J.M.2
Raydan, M.3
-
5
-
-
0003802343
-
-
Wadsworth Publishing Company, Belmont, California, U.S.A., 4
-
L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees. Wadsworth Publishing Company, Belmont, California, U.S.A., 1984. 4
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
6
-
-
84869812335
-
Convex relaxation techniques for segmentation, stereo and multiview reconstruction
-
MIT Press, 2
-
D. Cremers, T. Pock, K. Kolev, and A. Chambolle. Convex relaxation techniques for segmentation, stereo and multiview reconstruction. In Advances in Markov Random Fields for Vision and Image Processing. MIT Press, 2011. 2
-
(2011)
Advances in Markov Random Fields for Vision and Image Processing
-
-
Cremers, D.1
Pock, T.2
Kolev, K.3
Chambolle, A.4
-
7
-
-
34547760736
-
Image denoising by sparse 3-D transform-domain collaborative filtering
-
6
-
K. Dabov, A. Foi, V. Katkovnik, and K. O. Egiazarian. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on Image Processing, 16(8):2080-2095, 2007. 6
-
(2007)
IEEE Transactions on Image Processing
, vol.16
, Issue.8
, pp. 2080-2095
-
-
Dabov, K.1
Foi, A.2
Katkovnik, V.3
Egiazarian, K.O.4
-
8
-
-
84866658616
-
Robust trajectory-space TV-L1 optical flow for non-rigid sequences
-
7
-
R. Garg, A. Roussos, and L. Agapito. Robust trajectory-space TV-L1 optical flow for non-rigid sequences. In EMMCVPR, 2011. 7
-
(2011)
EMMCVPR
-
-
Garg, R.1
Roussos, A.2
Agapito, L.3
-
9
-
-
0000379660
-
Computing a nearest symmetric positive semidefinite matrix
-
4
-
N. J. Higham. Computing a nearest symmetric positive semidefinite matrix. Linear algebra and its applications, 103, 1988. 4
-
(1988)
Linear Algebra and Its Applications
, vol.103
-
-
Higham, N.J.1
-
11
-
-
70449621223
-
The MIR Flickr retrieval evaluation
-
ACM, 7
-
M. J. Huiskes and M. S. Lew. The MIR Flickr retrieval evaluation. In MIR 2008. ACM, 2008. 7
-
(2008)
MIR 2008
-
-
Huiskes, M.J.1
Lew, M.S.2
-
13
-
-
12844287465
-
Colorization using optimization
-
7
-
A. Levin, D. Lischinski, and Y. Weiss. Colorization using optimization. ACM Trans. Graph, 23(3):689-694, 2004. 7
-
(2004)
ACM Trans. Graph
, vol.23
, Issue.3
, pp. 689-694
-
-
Levin, A.1
Lischinski, D.2
Weiss, Y.3
-
14
-
-
84856642791
-
Decision tree fields
-
1, 2, 4, 5, 6
-
S. Nowozin, C. Rother, S. Bagon, T. Sharp, B. Yao, and P. Kohli. Decision tree fields. In ICCV, 2011. 1, 2, 4, 5, 6
-
(2011)
ICCV
-
-
Nowozin, S.1
Rother, C.2
Bagon, S.3
Sharp, T.4
Yao, B.5
Kohli, P.6
-
15
-
-
60449120149
-
Fields of experts
-
2, 6, 7
-
S. Roth and M. J. Black. Fields of experts. International Journal of Computer Vision, 82(2):205-229, 2009. 2, 6, 7
-
(2009)
International Journal of Computer Vision
, vol.82
, Issue.2
, pp. 205-229
-
-
Roth, S.1
Black, M.J.2
-
16
-
-
70450207702
-
Learning optimized MAP estimates in continuously-valued MRF models
-
1, 2
-
K. G. G. Samuel and M. F. Tappen. Learning optimized MAP estimates in continuously-valued MRF models. In CVPR, 2009. 1, 2
-
(2009)
CVPR
-
-
Samuel, K.G.G.1
Tappen, M.F.2
-
17
-
-
77955995598
-
Optimizing costly functions with simple constraints: A limited-memory projected quasi-Newton algorithm
-
4
-
M. Schmidt, E. van den Berg, M. Friedlander, and K. Murphy. Optimizing costly functions with simple constraints: A limited-memory projected quasi-Newton algorithm. In AISTATS, 2009. 4
-
(2009)
AISTATS
-
-
Schmidt, M.1
Berg Den E.Van2
Friedlander, M.3
Murphy, K.4
-
18
-
-
77955989583
-
A generative perspective on MRFs in low-level vision
-
2, 6, 7
-
U. Schmidt, Q. Gao, and S. Roth. A generative perspective on MRFs in low-level vision. In CVPR, 2010. 2, 6, 7
-
(2010)
CVPR
-
-
Schmidt, U.1
Gao, Q.2
Roth, S.3
-
19
-
-
79957444212
-
Continuous valued MRFs for image segmentation
-
A. Blake, P. Kohli, and C. Rother, editors. MIT Press, 2
-
D. Singaraju, L. Grady, A. K. Sinop, and R. Vidal. Continuous valued MRFs for image segmentation. In A. Blake, P. Kohli, and C. Rother, editors, Markov Random Fields for Vision and Image Processing. MIT Press, 2011. 2
-
(2011)
Markov Random Fields for Vision and Image Processing
-
-
Singaraju, D.1
Grady, L.2
Sinop, A.K.3
Vidal, R.4
-
21
-
-
34948821220
-
Learning Gaussian conditional random fields for low-level vision
-
1, 2, 7
-
M. Tappen, C. Liu, E. H. Adelson, and W. T. Freeman. Learning Gaussian conditional random fields for low-level vision. In CVPR, 2007. 1, 2, 7
-
(2007)
CVPR
-
-
Tappen, M.1
Liu, C.2
Adelson, E.H.3
Freeman, W.T.4
-
22
-
-
51949118679
-
The logistic random field - A convenient graphical model for learning parameters for MRF-based labeling
-
1
-
M. F. Tappen, K. G. G. Samuel, C. V. Dean, and D. Lyle. The logistic random field - a convenient graphical model for learning parameters for MRF-based labeling. In CVPR, 2008. 1
-
(2008)
CVPR
-
-
Tappen, M.F.1
Samuel, K.G.G.2
Dean, C.V.3
Lyle, D.4
|