-
2
-
-
36448962361
-
Cumulative voting consensus method for partitions with variable number of clusters
-
H. Ayad and M. Kamel. Cumulative voting consensus method for partitions with variable number of clusters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30 (1): 160-173, 2008.
-
(2008)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.30
, Issue.1
, pp. 160-173
-
-
Ayad, H.1
Kamel, M.2
-
4
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (8): 1798-1828, 2013.
-
(2013)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
14
-
-
84904482223
-
-
arXiv preprint arXiv: 1310. 1531
-
J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. arXiv preprint arXiv: 1310. 1531, 2013.
-
(2013)
Decaf: A Deep Convolutional Activation Feature for Generic Visual Recognition
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
15
-
-
79958139322
-
Building Rome on a cloudless day
-
J.-M. Frahm, P. Fite-Georgel, D. Gallup, T. Johnson, R. Raguram, C. Wu, Y.-H. Jen, E. Dunn, B. Clipp, S. Lazebnik, et al. Building rome on a cloudless day. In Proceedings of Euroupean Conference on Computer Vision, 2010.
-
(2010)
Proceedings of Euroupean Conference on Computer Vision
-
-
Frahm, J.-M.1
Fite-Georgel, P.2
Gallup, D.3
Johnson, T.4
Raguram, R.5
Wu, C.6
Jen, Y.-H.7
Dunn, E.8
Clipp, B.9
Lazebnik, S.10
-
18
-
-
84887601251
-
Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval
-
Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (12): 2916-2929, 2013.
-
(2013)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.35
, Issue.12
, pp. 2916-2929
-
-
Gong, Y.1
Lazebnik, S.2
Gordo, A.3
Perronnin, F.4
-
19
-
-
84959231611
-
Web scale photo hash clustering on a single machine
-
Y. Gong, M. Pawlowski, F. Yang, L. Brandy, L. Boundev, and R. Fergus. Web scale photo hash clustering on a single machine. In Proceedings of Computer Vision and Pattern Recognition, 2015.
-
(2015)
Proceedings of Computer Vision and Pattern Recognition
-
-
Gong, Y.1
Pawlowski, M.2
Yang, F.3
Brandy, L.4
Boundev, L.5
Fergus, R.6
-
20
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18 (7): 1527-1554, 2006.
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
29
-
-
84954187531
-
Spectral ensemble clustering
-
H. Liu, T. Liu, J. Wu, D. Tao, and Y. Fu. Spectral ensemble clustering. In Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015.
-
(2015)
Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
-
-
Liu, H.1
Liu, T.2
Wu, J.3
Tao, D.4
Fu, Y.5
-
30
-
-
84961956889
-
Dias: A disassemble-assemble framework for highly sparse text clustering
-
H. Liu, J. Wu, D. Tao, Y. Zhang, and Y. Fu. Dias: A disassemble-assemble framework for highly sparse text clustering. In Proceedings of SIAM International Conference on Data Mining, 2015.
-
(2015)
Proceedings of SIAM International Conference on Data Mining
-
-
Liu, H.1
Wu, J.2
Tao, D.3
Zhang, Y.4
Fu, Y.5
-
33
-
-
3042535216
-
Distinctive image features from scale-invariant keypoints
-
D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60 (2): 91-110, 2004.
-
(2004)
International Journal of Computer Vision
, vol.60
, Issue.2
, pp. 91-110
-
-
Lowe, D.G.1
-
38
-
-
84893170299
-
Auto-encoder based data clustering
-
C. Song, F. Liu, Y. Huang, L. Wang, and T. Tan. Auto-encoder based data clustering. Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, pages 117-124, 2013.
-
(2013)
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications
, pp. 117-124
-
-
Song, C.1
Liu, F.2
Huang, Y.3
Wang, L.4
Tan, T.5
-
39
-
-
0041965980
-
Cluster ensembles- A knowledge reuse framework for combining partitions
-
A. Strehl and J. Ghosh. Cluster ensembles- A knowledge reuse framework for combining partitions. Journal of Machine Learning Research, 3: 583-617, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 583-617
-
-
Strehl, A.1
Ghosh, J.2
-
40
-
-
84908218622
-
Learning deep representations for graph clustering
-
F. Tian, B. Gao, Q. Cui, E. Chen, and T. Liu. Learning deep representations for graph clustering. In Proceedings of AAAI Conference on Artificial Intelligence, 2014.
-
(2014)
Proceedings of AAAI Conference on Artificial Intelligence
-
-
Tian, F.1
Gao, B.2
Cui, Q.3
Chen, E.4
Liu, T.5
-
45
-
-
84916940648
-
K-means-based consensus clustering: A unified view
-
J. Wu, H. Liu, H. Xiong, J. Cao, and J. Chen. K-means-based consensus clustering: A unified view. IEEE Transactions on Knowledge and Data Engineering, 27 (1): 155-169, 2015.
-
(2015)
IEEE Transactions on Knowledge and Data Engineering
, vol.27
, Issue.1
, pp. 155-169
-
-
Wu, J.1
Liu, H.2
Xiong, H.3
Cao, J.4
Chen, J.5
-
48
-
-
78149264694
-
Heterogeneous clustering ensemble method for combining different cluster results
-
H. Yoon, S. Ahn, S. Lee, S. Cho, and J. Kim. Heterogeneous clustering ensemble method for combining different cluster results. Data Mining for Biomedical Applications, 2006
-
(2006)
Data Mining for Biomedical Applications
-
-
Yoon, H.1
Ahn, S.2
Lee, S.3
Cho, S.4
Kim, J.5
|