-
2
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
H. Lee, R. Grosse, R. Ranganath, and A. Ng, "Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations," International Conference on Machine Learning, 2009.
-
(2009)
International Conference on Machine Learning
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.4
-
3
-
-
80053437179
-
Multimodal deep learning
-
J. Ngiam, A. Khosia, J. Nam, H. Lee, and A. Ng, "Multimodal deep learning," International Conference on Machine Learning, 2011.
-
(2011)
International Conference on Machine Learning
-
-
Ngiam, J.1
Khosia, A.2
Nam, J.3
Lee, H.4
Ng, A.5
-
6
-
-
0042377235
-
Constrained kmeans clustering with background knowledge
-
K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl, "Constrained kmeans clustering with background knowledge," in International Conference on Machine Learning, vol. 1, 2001, pp. 577-584.
-
(2001)
International Conference on Machine Learning
, vol.1
, pp. 577-584
-
-
Wagstaff, K.1
Cardie, C.2
Rogers, S.3
Schrödl, S.4
-
7
-
-
34548583274
-
A tutorial on spectral clustering
-
U. Von Luxburg, "A tutorial on spectral clustering," Statistics and Computing, vol. 17, no. 4, pp. 395-416, 2007.
-
(2007)
Statistics and Computing
, vol.17
, Issue.4
, pp. 395-416
-
-
Von Luxburg, U.1
-
8
-
-
12244256379
-
Kernel k-means, spectral clustering and normalized cuts
-
I. S. Dhillon, Y. Guan, and B. Kulis, "Kernel k-means, spectral clustering and normalized cuts," in Proceedings of the tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2004, pp. 551-556.
-
(2004)
Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM
, pp. 551-556
-
-
Dhillon, I.S.1
Guan, Y.2
Kulis, B.3
-
9
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, 2006.
-
(2006)
Science
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
10
-
-
84919943663
-
-
Springer
-
C. Song, F. Liu, Y. Huang, and T. Tan, "Auto-encoder based data clustering," Springer, 2013.
-
(2013)
Auto-encoder Based Data Clustering
-
-
Song, C.1
Liu, F.2
Huang, Y.3
Tan, T.4
-
11
-
-
69349090197
-
Learning deep architectures for ai
-
Y. Bengio, "Learning deep architectures for ai," Foundations and Trends R in Machine Learning, vol. 2, no. 1, pp. 1-127, 2009.
-
(2009)
Foundations and Trends R in Machine Learning
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
13
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, "Extracting and composing robust features with denoising autoencoders," International Conference on Machine Learning, 2008.
-
(2008)
International Conference on Machine Learning
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
-
14
-
-
80053460450
-
Contractive auto-encoders: Explicit invariance during feature extraction
-
S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, "Contractive auto-encoders: Explicit invariance during feature extraction," International Conference on Machine Learning, 2011.
-
(2011)
International Conference on Machine Learning
-
-
Rifai, S.1
Vincent, P.2
Muller, X.3
Glorot, X.4
Bengio, Y.5
-
15
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
G. E. Hinton, "Training products of experts by minimizing contrastive divergence," Neural Computation, 2002.
-
(2002)
Neural Computation
-
-
Hinton, G.E.1
-
17
-
-
34547997615
-
Learning a non-linear embedding by preserving class neighbourhood structure
-
R. Salakhutdinov and G. Hinton, "Learning a non-linear embedding by preserving class neighbourhood structure," AI and Statistics, 2007.
-
(2007)
AI and Statistics
-
-
Salakhutdinov, R.1
Hinton, G.2
-
19
-
-
84887042736
-
Using very deep autoencoders for content-based image retrieval
-
A. Krizhevsky and G. E. Hinton, "Using very deep autoencoders for content-based image retrieval." in ESANN. Citeseer, 2011.
-
(2011)
ESANN. Citeseer
-
-
Krizhevsky, A.1
Hinton, G.E.2
-
21
-
-
0043278893
-
Laplacian eigenmaps and spectral techniques for embedding and clustering
-
M. Belkin and P. Niyogi, "Laplacian eigenmaps and spectral techniques for embedding and clustering." in Advances in Neural Information Processing Systems, vol. 14, 2001, pp. 585-591.
-
(2001)
Advances in Neural Information Processing Systems
, vol.14
, pp. 585-591
-
-
Belkin, M.1
Niyogi, P.2
-
22
-
-
37849035696
-
The group lasso for logistic regression
-
L. Meier, S. Van De Geer, and P. Bühlmann, "The group lasso for logistic regression," Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 70, no. 1, pp. 53-71, 2008.
-
(2008)
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
, vol.70
, Issue.1
, pp. 53-71
-
-
Meier, L.1
Van De Geer, S.2
Bühlmann, P.3
-
23
-
-
85135939782
-
Efficient and robust feature selection via joint l21-norms minimization
-
F. Nie, H. Huang, X. Cai, and C. Ding, "Efficient and robust feature selection via joint l21-norms minimization," Advances in Neural Information Processing Systems, 2010.
-
(2010)
Advances in Neural Information Processing Systems
-
-
Nie, F.1
Huang, H.2
Cai, X.3
Ding, C.4
-
24
-
-
4544292940
-
The cmu pose, illumination, and expression (pie) database
-
T. Sim, S. Baker, and M. Bsat, "The cmu pose, illumination, and expression (pie) database," in Automatic Face and Gesture Recognition, 2002. Proceedings. Fifth IEEE International Conference on. IEEE, 2002, pp. 46-51.
-
(2002)
Automatic Face and Gesture Recognition, 2002. Proceedings. Fifth IEEE International Conference On. IEEE
, pp. 46-51
-
-
Sim, T.1
Baker, S.2
Bsat, M.3
-
25
-
-
0035363672
-
From few to many: Illumination cone models for face recognition under variable lighting and pose
-
A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, "From few to many: Illumination cone models for face recognition under variable lighting and pose," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 23, no. 6, pp. 643-660, 2001.
-
(2001)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.23
, Issue.6
, pp. 643-660
-
-
Georghiades, A.S.1
Belhumeur, P.N.2
Kriegman, D.J.3
-
26
-
-
15044358511
-
Face recognition using laplacianfaces
-
X. He, S. Yan, Y. Hu, P. Niyogi, and H.-J. Zhang, "Face recognition using laplacianfaces," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 27, no. 3, pp. 328-340, 2005.
-
(2005)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.27
, Issue.3
, pp. 328-340
-
-
He, X.1
Yan, S.2
Hu, Y.3
Niyogi, P.4
Zhang, H.-J.5
-
27
-
-
0034244751
-
Normalized cuts and image segmentation
-
J. Shi and J. Malik, "Normalized cuts and image segmentation," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 22, no. 8, pp. 888-905, 2000.
-
(2000)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.22
, Issue.8
, pp. 888-905
-
-
Shi, J.1
Malik, J.2
-
28
-
-
0038043441
-
Image segmentation with ratio cut
-
S. Wang and J. M. Siskind, "Image segmentation with ratio cut," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 25, no. 6, pp. 675-690, 2003.
-
(2003)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.25
, Issue.6
, pp. 675-690
-
-
Wang, S.1
Siskind, J.M.2
-
29
-
-
79551528802
-
Parallel spectral clustering in distributed systems
-
W.-Y. Chen, Y. Song, H. Bai, C.-J. Lin, and E. Y. Chang, "Parallel spectral clustering in distributed systems," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 33, no. 3, pp. 568-586, 2011.
-
(2011)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.33
, Issue.3
, pp. 568-586
-
-
Chen, W.-Y.1
Song, Y.2
Bai, H.3
Lin, C.-J.4
Chang, E.Y.5
|