메뉴 건너뛰기




Volumn , Issue , 2014, Pages 4225-4232

Joint summarization of large-scale collections of web images and videos for storyline reconstruction

Author keywords

Storyline reconstruction; Video summarization

Indexed keywords

DIRECTED GRAPHS; GRAPHIC METHODS; PATTERN RECOGNITION; VIDEO RECORDING;

EID: 84911405209     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.538     Document Type: Conference Paper
Times cited : (192)

References (21)
  • 1
    • 69949181550 scopus 로고    scopus 로고
    • Online, simultaneous shot boundary detection and key frame extraction for sports videos using rank tracing
    • W. Abd-Almageed. Online, Simultaneous Shot Boundary Detection and Key Frame Extraction for Sports Videos Using Rank Tracing. In ICIP, 2008.
    • (2008) ICIP
    • Abd-Almageed, W.1
  • 2
    • 51949090223 scopus 로고    scopus 로고
    • Defense of nearest-neighbor based image classification
    • O. Boiman, E. Shechtman, and M. Irani. In Defense of Nearest-Neighbor Based Image Classification. In CVPR, 2008.
    • (2008) CVPR
    • Boiman, O.1    Shechtman, E.2    Irani, M.3
  • 3
    • 84887369458 scopus 로고    scopus 로고
    • Watching unlabeled video helps learn new human actions from very few labeled snapshots
    • C. Y. Chen and K. Grauman. Watching Unlabeled Video Helps Learn New Human Actions from Very Few Labeled Snapshots. In CVPR, 2013.
    • (2013) CVPR
    • Chen, C.Y.1    Grauman, K.2
  • 4
    • 84887396117 scopus 로고    scopus 로고
    • Event recognition in videos by learning from heterogeneous web sources
    • L. Chen, L. Duan, and D. Xu. Event Recognition in Videos by Learning from Heterogeneous Web Sources. In CVPR, 2013.
    • (2013) CVPR
    • Chen, L.1    Duan, L.2    Xu, D.3
  • 6
    • 0032361278 scopus 로고    scopus 로고
    • Penalized regressions: The bridge versus the lasso
    • W. J. Fu. Penalized Regressions: The Bridge Versus the Lasso. J. Computational Graphical Statistics, 7:397-416, 1998.
    • (1998) J. Computational Graphical Statistics , vol.7 , pp. 397-416
    • Fu, W.J.1
  • 7
    • 70450202741 scopus 로고    scopus 로고
    • Understanding videos, constructing plots: Learning a visually grounded storyline model from annotated videos
    • A. Gupta, P. Srinivasan, J. Shi, and L. S. Davis. Understanding Videos, Constructing Plots: Learning a Visually Grounded Storyline Model from Annotated Videos. In ICCV, 2009.
    • (2009) ICCV
    • Gupta, A.1    Srinivasan, P.2    Shi, J.3    Davis, L.S.4
  • 8
    • 84887392384 scopus 로고    scopus 로고
    • Large-scale video summarization using web-image priors
    • A. Khosla, R. Hamid, C. J. Lin, and N. Sundaresan. Large-Scale Video Summarization Using Web-Image Priors. In CVPR, 2013.
    • (2013) CVPR
    • Khosla, A.1    Hamid, R.2    Lin, C.J.3    Sundaresan, N.4
  • 9
    • 84887334672 scopus 로고    scopus 로고
    • Jointly aligning and segmenting multiple web photo streams for the inference of collective photo storylines
    • G. Kim and E. P. Xing. Jointly Aligning and Segmenting Multiple Web Photo Streams for the Inference of Collective Photo Storylines. In CVPR, 2013.
    • (2013) CVPR
    • Kim, G.1    Xing, E.P.2
  • 10
    • 84856636112 scopus 로고    scopus 로고
    • Distributed coseg-mentation via submodular optimization on anisotropic diffusion
    • G. Kim, E. P. Xing, L. Fei-Fei, and T. Kanade. Distributed Coseg-mentation via Submodular Optimization on Anisotropic Diffusion. In ICCV, 2011.
    • (2011) ICCV
    • Kim, G.1    Xing, E.P.2    Fei-Fei, L.3    Kanade, T.4
  • 12
    • 84866723224 scopus 로고    scopus 로고
    • Discovering important people and objects for egocentric video summarization
    • Y. J. Lee, J. Ghosh, and K. Grauman. Discovering Important People and Objects for Egocentric Video Summarization. In CVPR, 2012.
    • (2012) CVPR
    • Lee, Y.J.1    Ghosh, J.2    Grauman, K.3
  • 13
    • 84887342438 scopus 로고    scopus 로고
    • Story-driven summarization for egocentric video
    • Z. Lu and K. Grauman. Story-Driven Summarization for Egocentric Video. In CVPR, 2013.
    • (2013) CVPR
    • Lu, Z.1    Grauman, K.2
  • 14
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • N. Meinshausen and P. Bühlmann. High-Dimensional Graphs and Variable Selection with the Lasso. Ann. Statist., 34(3):1436-1462, 2006.
    • (2006) Ann. Statist. , vol.34 , Issue.3 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 15
    • 78650587337 scopus 로고    scopus 로고
    • TV news story segmentation based on semantic coherence and content similarity
    • H. Misra, F. Hopfgartner, A. Goyal, P. Punitha, and J. M. Jose. TV News Story Segmentation Based on Semantic Coherence and Content Similarity. In MMM, 2010.
    • (2010) MMM
    • Misra, H.1    Hopfgartner, F.2    Goyal, A.3    Punitha, P.4    Jose, J.M.5
  • 17
    • 80053444447 scopus 로고    scopus 로고
    • Uncovering the temporal dynamics of diffusion networks
    • M. G. Rodriguez, D. Balduzzi, and B. Schölkopf. Uncovering the Temporal Dynamics of Diffusion Networks. In ICML, 2011.
    • (2011) ICML
    • Rodriguez, M.G.1    Balduzzi, D.2    Schölkopf, B.3
  • 18
    • 50949090870 scopus 로고    scopus 로고
    • Scene summarization for online image collections
    • I. Simon, N. Snavely, and S. M. Seitz. Scene Summarization for Online Image Collections. In ICCV, 2007.
    • (2007) ICCV
    • Simon, I.1    Snavely, N.2    Seitz, S.M.3
  • 19
    • 84858737854 scopus 로고    scopus 로고
    • Time-varying dynamic bayesian networks
    • L. Song, M. Kolar, and E. Xing. Time-Varying Dynamic Bayesian Networks. In NIPS, 2009.
    • (2009) NIPS
    • Song, L.1    Kolar, M.2    Xing, E.3
  • 20
    • 84877780666 scopus 로고    scopus 로고
    • Shifting weights: Adapting object detectors from image to video
    • K. Tang, V. Ramanathan, L. Fei-Fei, and D. Koller. Shifting Weights: Adapting Object Detectors from Image to Video. In NIPS, 2012.
    • (2012) NIPS
    • Tang, K.1    Ramanathan, V.2    Fei-Fei, L.3    Koller, D.4
  • 21
    • 54749092170 scopus 로고    scopus 로고
    • 80 million tiny images: A large data set for nonparametric object and scene recognition
    • A. Torralba, R. Fergus, and W. T. Freeman. 80 Million Tiny Images: A Large Data Set for Nonparametric Object and Scene Recognition. IEEE PAMI, 30:1958-1970, 2008.
    • (2008) IEEE PAMI , vol.30 , pp. 1958-1970
    • Torralba, A.1    Fergus, R.2    Freeman, W.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.