메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 1502-1510

Web-scale image clustering revisited

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SCIENCE; COMPUTERS; ELECTRICAL ENGINEERING;

EID: 84973891538     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.176     Document Type: Conference Paper
Times cited : (43)

References (39)
  • 1
    • 84898788849 scopus 로고    scopus 로고
    • Quantize and conquer: A dimensionalityrecursive solution to clustering, vector quantization, and image retrieval
    • 1, 3, 5
    • Y. Avrithis. Quantize and conquer: A dimensionalityrecursive solution to clustering, vector quantization, and image retrieval. In ICCV. 2013. 1, 3, 5
    • (2013) ICCV
    • Avrithis, Y.1
  • 2
    • 84880303706 scopus 로고    scopus 로고
    • Approximate Gaussian mixtures for large scale vocabularies
    • 1, 2, 3, 4, 5, 6
    • Y. Avrithis and Y. Kalantidis. Approximate Gaussian mixtures for large scale vocabularies. In ECCV. 2012. 1, 2, 3, 4, 5, 6
    • (2012) ECCV
    • Avrithis, Y.1    Kalantidis, Y.2
  • 3
    • 78650978976 scopus 로고    scopus 로고
    • Retrieving landmark and non-landmark images from community photo collections
    • 2
    • Y. Avrithis, Y. Kalantidis, G. Tolias, and E. Spyrou. Retrieving landmark and non-landmark images from community photo collections. In ACM Multimedia, 2010. 2
    • (2010) ACM Multimedia
    • Avrithis, Y.1    Kalantidis, Y.2    Tolias, G.3    Spyrou, E.4
  • 4
    • 84866710693 scopus 로고    scopus 로고
    • The inverted multi-index
    • 2, 3, 4
    • A. Babenko and V. Lempitsky. The inverted multi-index. In CVPR, 2012. 2, 3, 4
    • (2012) CVPR
    • Babenko, A.1    Lempitsky, V.2
  • 9
    • 0029357425 scopus 로고
    • Mean shift, mode seeking, and clustering
    • 1, 2
    • Y. Cheng. Mean shift, mode seeking, and clustering. PAMI, 17(8):790-799, 1995. 1, 2
    • (1995) PAMI , vol.17 , Issue.8 , pp. 790-799
    • Cheng, Y.1
  • 10
    • 73849136385 scopus 로고    scopus 로고
    • Large-scale discovery of spatially related images
    • Feb 1, 2
    • O. Chum and J. Matas. Large-scale discovery of spatially related images. PAMI, 32(2):371-377, Feb 2010. 1, 2
    • (2010) PAMI , vol.32 , Issue.2 , pp. 371-377
    • Chum, O.1    Matas, J.2
  • 12
    • 0036522404 scopus 로고    scopus 로고
    • Unsupervised learning of finite mixture models
    • 3
    • M. Figueiredo and A. Jain. Unsupervised learning of finite mixture models. PAMI, 24(3):381-396, 2002. 3
    • (2002) PAMI , vol.24 , Issue.3 , pp. 381-396
    • Figueiredo, M.1    Jain, A.2
  • 13
    • 84887348338 scopus 로고    scopus 로고
    • Optimized product quantization for approximate nearest neighbor search
    • 3, 5
    • T. Ge, K. He, Q. Ke, and J. Sun. Optimized product quantization for approximate nearest neighbor search. In CVPR, 2013. 3, 5
    • (2013) CVPR
    • Ge, T.1    He, K.2    Ke, Q.3    Sun, J.4
  • 15
    • 77955989565 scopus 로고    scopus 로고
    • Image webs: Computing and exploiting connectivity in image collections
    • 3
    • K. Heath, N. Gelfand, M. Ovsjanikov, M. Aanjaneya, and L. J. Guibas. Image webs: Computing and exploiting connectivity in image collections. In CVPR, 2010. 3
    • (2010) CVPR
    • Heath, K.1    Gelfand, N.2    Ovsjanikov, M.3    Aanjaneya, M.4    Guibas, L.J.5
  • 16
    • 78649317568 scopus 로고    scopus 로고
    • Product quantization for nearest neighbor search
    • 5
    • H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search. PAMI, 33(1), 2011. 5
    • (2011) PAMI , vol.33 , Issue.1
    • Jégou, H.1    Douze, M.2    Schmid, C.3
  • 17
    • 84911439181 scopus 로고    scopus 로고
    • Triangulation embedding and democratic aggregation for image search
    • 2
    • H. Jégou and A. Zisserman. Triangulation embedding and democratic aggregation for image search. In CVPR, 2014. 2
    • (2014) CVPR
    • Jégou, H.1    Zisserman, A.2
  • 19
    • 37849011950 scopus 로고    scopus 로고
    • How flickr helps us make sense of the world: Context and content in community-contributed media collections
    • 2
    • L. Kennedy, M. Naaman, S. Ahern, R. Nair, and T. Rattenbury. How flickr helps us make sense of the world: Context and content in community-contributed media collections. In ACM Multimedia, volume 3, pages 631-640, 2007. 2
    • (2007) ACM Multimedia , vol.3 , pp. 631-640
    • Kennedy, L.1    Naaman, M.2    Ahern, S.3    Nair, R.4    Rattenbury, T.5
  • 20
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • 2, 5
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS. 2012. 2, 5
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 21
    • 84867132578 scopus 로고    scopus 로고
    • Revisiting k-means: New algorithms via Bayesian nonparametrics
    • 3
    • B. Kulis and M. I. Jordan. Revisiting k-means: New algorithms via Bayesian nonparametrics. In ICML, 2012. 3
    • (2012) ICML
    • Kulis, B.1    Jordan, M.I.2
  • 22
    • 56749152232 scopus 로고    scopus 로고
    • Modeling and recognition of landmark image collections using iconic scene graphs
    • 2
    • X. Li, C. Wu, C. Zach, S. Lazebnik, and J.-M. Frahm. Modeling and recognition of landmark image collections using iconic scene graphs. In ECCV, pages 427-440, 2008. 2
    • (2008) ECCV , pp. 427-440
    • Li, X.1    Wu, C.2    Zach, C.3    Lazebnik, S.4    Frahm, J.-M.5
  • 23
    • 77953228638 scopus 로고    scopus 로고
    • Landmark classification in large-scale image collections
    • 2
    • Y. Li, D. J. Crandall, and D. P. Huttenlocher. Landmark classification in large-scale image collections. In ICCV, 2009. 2
    • (2009) ICCV
    • Li, Y.1    Crandall, D.J.2    Huttenlocher, D.P.3
  • 24
    • 34547151535 scopus 로고    scopus 로고
    • Clustering billions of images with large scale nearest neighbor search
    • 3
    • T. Liu, C. Rosenberg, and H. Rowley. Clustering billions of images with large scale nearest neighbor search. In WACV, 2007. 3
    • (2007) WACV
    • Liu, T.1    Rosenberg, C.2    Rowley, H.3
  • 26
    • 34948903793 scopus 로고    scopus 로고
    • Object retrieval with large vocabularies and fast spatial matching
    • 1, 5
    • J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and fast spatial matching. In CVPR, 2007. 1, 5
    • (2007) CVPR
    • Philbin, J.1    Chum, O.2    Isard, M.3    Sivic, J.4    Zisserman, A.5
  • 27
    • 70349152349 scopus 로고    scopus 로고
    • World-scale mining of objects and events from community photo collections
    • 2
    • T. Quack, B. Leibe, and L. Van Gool. World-scale mining of objects and events from community photo collections. In CIVR, pages 47-56, 2008. 2
    • (2008) CIVR , pp. 47-56
    • Quack, T.1    Leibe, B.2    Van Gool, L.3
  • 29
    • 33845596932 scopus 로고    scopus 로고
    • Using multiple segmentations to discover objects and their extent in image collections
    • 2
    • B. Russell, A. Efros, J. Sivic, W. Freeman, and A. Zisserman. Using multiple segmentations to discover objects and their extent in image collections. In CVPR, 2006. 2
    • (2006) CVPR
    • Russell, B.1    Efros, A.2    Sivic, J.3    Freeman, W.4    Zisserman, A.5
  • 30
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • 2
    • B. Schölkopf, A. Smola, and K. Muller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10(5):1299-1319, 1998. 2
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Muller, K.3
  • 32
    • 50949090870 scopus 로고    scopus 로고
    • Scene summarization for online image collections
    • 2
    • I. Simon, N. Snavely, and S. Seitz. Scene summarization for online image collections. In ICCV, 2007. 2
    • (2007) ICCV
    • Simon, I.1    Snavely, N.2    Seitz, S.3
  • 34
    • 84898829999 scopus 로고    scopus 로고
    • To aggregate or not to aggregate: Selective match kernels for image search
    • 2
    • G. Tolias, Y. Avrithis, and H. Jégou. To aggregate or not to aggregate: Selective match kernels for image search. In ICCV, 2013. 2
    • (2013) ICCV
    • Tolias, G.1    Avrithis, Y.2    Jégou, H.3
  • 35
    • 70450153793 scopus 로고    scopus 로고
    • Quick shift and kernel methods for mode seeking
    • 2
    • A. Vedaldi and S. Soatto. Quick shift and kernel methods for mode seeking. In ECCV, 2008. 2
    • (2008) ECCV
    • Vedaldi, A.1    Soatto, S.2
  • 36
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • 2
    • U. Von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395-416, 2007. 2
    • (2007) Statistics and Computing , vol.17 , Issue.4 , pp. 395-416
    • Von Luxburg, U.1
  • 37
    • 84881360631 scopus 로고    scopus 로고
    • An evaluation of two automatic landmark building discovery algorithms for city reconstruction
    • 5, 6
    • T. Weyand, J. Hosang, and B. Leibe. An evaluation of two automatic landmark building discovery algorithms for city reconstruction. In RMLE. 2010. 5, 6
    • (2010) RMLE.
    • Weyand, T.1    Hosang, J.2    Leibe, B.3
  • 38
    • 84856661230 scopus 로고    scopus 로고
    • Discovering favorite views of popular places with iconoid shift
    • 1, 2, 7
    • T. Weyand and B. Leibe. Discovering favorite views of popular places with iconoid shift. In ICCV, 2011. 1, 2, 7
    • (2011) ICCV
    • Weyand, T.1    Leibe, B.2
  • 39
    • 71749094178 scopus 로고    scopus 로고
    • Parallel k-means clustering based on MapReduce
    • 3
    • W. Zhao, H. Ma, and Q. He. Parallel k-means clustering based on MapReduce. In Cloud Computing, pages 674-679. 2009. 3
    • (2009) Cloud Computing , pp. 674-679
    • Zhao, W.1    Ma, H.2    He, Q.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.