메뉴 건너뛰기




Volumn , Issue , 2009, Pages 877-885

Adapting the right measures for K-means clustering

Author keywords

Cluster validation; External criteria; K means

Indexed keywords

APPLICATION SCENARIO; CLUSTER VALIDATION; EXTERNAL CRITERIA; IMBALANCED CLASS; INCONSISTENT INFORMATION; K-MEANS; K-MEANS CLUSTERING;

EID: 70350647693     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1557019.1557115     Document Type: Conference Paper
Times cited : (218)

References (26)
  • 1
    • 0040471693 scopus 로고    scopus 로고
    • Detecting stable clusters using principal component analysis
    • Humana press
    • A. Ben-Hur and I. Guyon. Detecting stable clusters using principal component analysis. In Methods in Molecular Biology. Humana press, 2003.
    • (2003) Methods in Molecular Biology
    • Ben-Hur, A.1    Guyon, I.2
  • 11
    • 85081525086 scopus 로고    scopus 로고
    • G. Karypis. Cluto, software for clustering high-dimensional datasets, version 2.1.1. Oct. 2007
    • G. Karypis. Cluto - software for clustering high-dimensional datasets, version 2.1.1. Oct. 2007.
  • 13
    • 85081502538 scopus 로고    scopus 로고
    • B. Larsen and C. Aone. Fast and effective text mining using linear-time document clustering. In KDD, 1999.
    • B. Larsen and C. Aone. Fast and effective text mining using linear-time document clustering. In KDD, 1999.
  • 14
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • Statistics. University of California Press
    • J. MacQueen. Some methods for classification and analysis of multivariate observations. In BSMSP, Vol. I, Statistics. University of California Press, 1967.
    • (1967) BSMSP , vol.1
    • MacQueen, J.1
  • 15
    • 85081508224 scopus 로고    scopus 로고
    • MathWorks. K-means clustering in statistics toolbox
    • MathWorks. K-means clustering in statistics toolbox.
  • 16
    • 31844440880 scopus 로고    scopus 로고
    • Comparing clusterings-an axiomatic view
    • M. Meila. Comparing clusterings-an axiomatic view. In ICML, pages 577-584, 2005.
    • (2005) ICML , pp. 577-584
    • Meila, M.1
  • 18
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • W.M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66:846-850, 1971.
    • (1971) Journal of the American Statistical Association , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 23
    • 2142794241 scopus 로고    scopus 로고
    • Performance criteria for graph clustering and markov cluster experiments
    • Centrum voor Wiskunde en Informatica
    • S. van Dongen. Performance criteria for graph clustering and markov cluster experiments. TRINS= R0012, Centrum voor Wiskunde en Informatica. 2000.
    • (2000) TRINS= R0012
    • van Dongen, S.1
  • 24
    • 49749114842 scopus 로고    scopus 로고
    • A generalization of proximity functions for k-means
    • J. Wu, H. Xiong, J. Chen, and W. Zhou. A generalization of proximity functions for k-means. In ICDM, 2007.
    • (2007) ICDM
    • Wu, J.1    Xiong, H.2    Chen, J.3    Zhou, W.4
  • 25
    • 33749563831 scopus 로고    scopus 로고
    • H. Xiong, J. Wu, and J. Chen. K-means clustering versus validation measures: A data distribution perspective. In KDD, 2006.
    • H. Xiong, J. Wu, and J. Chen. K-means clustering versus validation measures: A data distribution perspective. In KDD, 2006.
  • 26
    • 3543085722 scopus 로고    scopus 로고
    • Criterion functions for document clustering: Experiments and analysis
    • Y. Zhao and G. Karypis. Criterion functions for document clustering: Experiments and analysis. Machine Learning, 55(3):311-331, 2004.
    • (2004) Machine Learning , vol.55 , Issue.3 , pp. 311-331
    • Zhao, Y.1    Karypis, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.