-
1
-
-
55149088329
-
Convex multi-task feature learning
-
2
-
A. Argyriou, T. Evgeniou, and M. Pontil. Convex Multi-Task Feature Learning. Machine Learning, 73 (3): 243-272, 2008. 2
-
(2008)
Machine Learning
, vol.73
, Issue.3
, pp. 243-272
-
-
Argyriou, A.1
Evgeniou, T.2
Pontil, M.3
-
2
-
-
84911361339
-
Domain adaptation on the statistical manifold
-
2
-
M. Baktashmotlagh, M. T. Harandi, B. C. Lovell, and M. Salzmann. Domain Adaptation on the Statistical Manifold. In CVPR, pages 2481-2488, 2014. 2
-
(2014)
CVPR
, pp. 2481-2488
-
-
Baktashmotlagh, M.1
Harandi, M.T.2
Lovell, B.C.3
Salzmann, M.4
-
4
-
-
84879854889
-
Representation learning: A review and new perspectives
-
2
-
Y. Bengio, A. C. Courville, and P. Vincent. Representation Learning: A Review and New Perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (8): 1798-1828, 2013. 2
-
(2013)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.C.2
Vincent, P.3
-
5
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
1, 2, 5
-
Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy Layer-Wise Training of Deep Networks. In NIPS, pages 153-160, 2007. 1, 2, 5
-
(2007)
NIPS
, pp. 153-160
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
6
-
-
85162492909
-
Generalizing from several related classification tasks to a new unlabeled sample
-
1, 2
-
G. Blanchard, G. Lee, and C. Scott. Generalizing from Several Related Classification Tasks to a New Unlabeled Sample. In NIPS, volume 1, pages 2178-2186, 2011. 1, 2
-
(2011)
NIPS
, vol.1
, pp. 2178-2186
-
-
Blanchard, G.1
Lee, G.2
Scott, C.3
-
7
-
-
0024220237
-
Auto-association by multilayer perceptrons and singular value decomposition
-
2
-
H. Bourlard and Y. Kamp. Auto-Association by Multilayer Perceptrons and Singular Value Decomposition. Biological Cybernetics, 59: 291-294, 1988. 2
-
(1988)
Biological Cybernetics
, vol.59
, pp. 291-294
-
-
Bourlard, H.1
Kamp, Y.2
-
8
-
-
0031189914
-
Multitask learning
-
1, 2, 3
-
R. Caruana. Multitask Learning. Machine Learning, 28: 41-75, 1997. 1, 2, 3
-
(1997)
Machine Learning
, vol.28
, pp. 41-75
-
-
Caruana, R.1
-
9
-
-
84867129067
-
Marginalized denoising autoencoders for domain adaptation
-
2
-
M. Chen, Z. Xu, K. Weinberger, and F. Sha. Marginalized Denoising Autoencoders for Domain Adaptation. In ICML, pages 767-774, 2012. 2
-
(2012)
ICML
, pp. 767-774
-
-
Chen, M.1
Xu, Z.2
Weinberger, K.3
Sha, F.4
-
10
-
-
77956006912
-
Exploiting hierarchical context on a large database of object categories
-
4
-
M. J. Choi, J. J. Lim, A. Torralba, and A. S. Willsky. Exploiting hierarchical context on a large database of object categories. In CVPR, pages 129-136, 2010. 4
-
(2010)
CVPR
, pp. 129-136
-
-
Choi, M.J.1
Lim, J.J.2
Torralba, A.3
Willsky, A.S.4
-
11
-
-
84866714584
-
Multi-column deep neural network for image classification
-
1
-
D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural network for image classification. In CVPR, pages 3642-3649, 2012. 1
-
(2012)
CVPR
, pp. 3642-3649
-
-
Ciresan, D.1
Meier, U.2
Schmidhuber, J.3
-
12
-
-
84964085441
-
On the algorithmic implementation of multiclass kernel-based vector machines
-
5
-
K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector machines. JMLR, 2: 265-292, 2001. 5
-
(2001)
JMLR
, vol.2
, pp. 265-292
-
-
Crammer, K.1
Singer, Y.2
-
13
-
-
84906332834
-
DeCAF: A deep convolutional activation feature for generic visual recognition
-
2, 7
-
J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition. In ICML, pages 647-655, 2014. 2, 7
-
(2014)
ICML
, pp. 647-655
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
14
-
-
51849167307
-
-
1, 4
-
M. Everingham, L. Van-Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results, 2007. 1, 4
-
(2007)
The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results
-
-
Everingham, M.1
Van-Gool, L.2
Williams, C.K.I.3
Winn, J.4
Zisserman, A.5
-
15
-
-
50949133669
-
LIBLINEAR: A library for large linear classification
-
5
-
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A Library for Large Linear Classification. JMLR, 9: 1871-1874, 2008. 5
-
(2008)
JMLR
, vol.9
, pp. 1871-1874
-
-
Fan, R.-E.1
Chang, K.-W.2
Hsieh, C.-J.3
Wang, X.-R.4
Lin, C.-J.5
-
16
-
-
84898795612
-
Unbiased metric learning: On the utilization of multiple datasets and web images for softening bias
-
2, 7
-
C. Fang, Y. Xu, and D. N. Rockmore. Unbiased Metric Learning: On the Utilization of Multiple Datasets and Web Images for Softening Bias. In ICCV, pages 1657-1664, 2013. 2, 7
-
(2013)
ICCV
, pp. 1657-1664
-
-
Fang, C.1
Xu, Y.2
Rockmore, D.N.3
-
17
-
-
84905233815
-
Deep hybrid networks with good out-of-sample object recognition
-
2
-
M. Ghifary, W. B. Kleijn, and M. Zhang. Deep hybrid networks with good out-of-sample object recognition. In ICASSP, pages 5437-5441, 2014. 2
-
(2014)
ICASSP
, pp. 5437-5441
-
-
Ghifary, M.1
Kleijn, W.B.2
Zhang, M.3
-
18
-
-
84899010695
-
Reshaping visual datasets for domain adaptation
-
1
-
B. Gong, K. Grauman, and F. Sha. Reshaping Visual Datasets for Domain Adaptation. In NIPS, pages 1286-1294, 2013. 1
-
(2013)
NIPS
, pp. 1286-1294
-
-
Gong, B.1
Grauman, K.2
Sha, F.3
-
19
-
-
84866657270
-
Geodesic flow kernel for unsupervised domain adaptation
-
7
-
B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic Flow Kernel for Unsupervised Domain Adaptation. In CVPR, pages 2066-2073, 2012. 7
-
(2012)
CVPR
, pp. 2066-2073
-
-
Gong, B.1
Shi, Y.2
Sha, F.3
Grauman, K.4
-
21
-
-
84867852273
-
Undoing the damage of dataset bias
-
2, 7
-
A. Khosla, T. Zhou, T. Malisiewicz, A. Efros, and A. Torralba. Undoing the Damage of Dataset Bias. In ECCV, volume I, pages 158-171, 2012. 2, 7
-
(2012)
ECCV
, vol.1
, pp. 158-171
-
-
Khosla, A.1
Zhou, T.2
Malisiewicz, T.3
Efros, A.4
Torralba, A.5
-
23
-
-
84878919540
-
Imagenet classification with deep convolutional neural networks
-
1, 6
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. In NIPS, volume 25, pages 1106-1114, 2012. 1, 6
-
(2012)
NIPS
, vol.25
, pp. 1106-1114
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
24
-
-
0032203257
-
Gradientbased learning applied to document recognition
-
4
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbased learning applied to document recognition. In Proceedings of the IEEE, volume 86, pages 2278-2324, 1998. 4
-
(1998)
Proceedings of the IEEE
, vol.86
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
25
-
-
0042441074
-
Analyzing appearance and contour based methods for object categorization
-
4
-
B. Leibe and B. Schiele. Analyzing appearance and contour based methods for object categorization. In CVPR, pages 409-415, 2003. 4
-
(2003)
CVPR
, pp. 409-415
-
-
Leibe, B.1
Schiele, B.2
-
26
-
-
84897517066
-
Domain generalization via invariant feature representation
-
1, 2, 5
-
K. Muandet, D. Balduzzi, and B. Schölkopf. Domain Generalization via Invariant Feature Representation. In ICML, pages 10-18, 2013. 1, 2, 5
-
(2013)
ICML
, pp. 10-18
-
-
Muandet, K.1
Balduzzi, D.2
Schölkopf, B.3
-
27
-
-
80053460450
-
Contractive auto-encoders: Explicit invariance during feature extraction
-
2, 5, 6
-
S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. Contractive Auto-Encoders: Explicit Invariance During Feature Extraction. In ICML, number 1, pages 833-840, 2011. 2, 5, 6
-
(2011)
ICML
, Issue.1
, pp. 833-840
-
-
Rifai, S.1
Vincent, P.2
Muller, X.3
Glorot, X.4
Bengio, Y.5
-
29
-
-
0022471098
-
Learning representations by back-propagating errors
-
2
-
D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. Nature, 323: 533-536, 1986. 2
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
30
-
-
39749186006
-
LabelMe: A database and web-based tool for image annotation
-
4
-
B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. LabelMe: A database and web-based tool for image annotation. In IJCV, volume 77, pages 157-173. 2008. 4
-
(2008)
IJCV
, vol.77
, pp. 157-173
-
-
Russell, B.C.1
Torralba, A.2
Murphy, K.P.3
Freeman, W.T.4
-
31
-
-
78149318752
-
Adapting visual cateogry models to new domains
-
1, 2, 4, 7
-
K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting Visual Cateogry Models to New Domains. In ECCV, pages 213-226, 2010. 1, 2, 4, 7
-
(2010)
ECCV
, pp. 213-226
-
-
Saenko, K.1
Kulis, B.2
Fritz, M.3
Darrell, T.4
-
32
-
-
84928547704
-
Sequence to sequence learning with neural networks
-
1
-
I. Sutskever, O. Vinyals, and Q. Le. Sequence to Sequence Learning with Neural Networks. In NIPS, 2014. 1
-
(2014)
NIPS
-
-
Sutskever, I.1
Vinyals, O.2
Le, Q.3
-
33
-
-
77956542104
-
Deep networks for robust visual recognition
-
2
-
Y. Tang and C. Eliasmith. Deep networks for robust visual recognition. In ICML, pages 1055-1062, 2010. 2
-
(2010)
ICML
, pp. 1055-1062
-
-
Tang, Y.1
Eliasmith, C.2
-
34
-
-
85031124575
-
Is learning the n-th thing any easier than learning the first?
-
1, 2
-
S. Thrun. Is learning the n-th thing any easier than learning the first? In NIPS, pages 640-646, 1996. 1, 2
-
(1996)
NIPS
, pp. 640-646
-
-
Thrun, S.1
-
35
-
-
80052908300
-
Unbiased look at dataset bias
-
1, 8
-
A. Torralba and A. Efros. Unbiased look at dataset bias. In CVPR, pages 1521-1528, 2011. 1, 8
-
(2011)
CVPR
, pp. 1521-1528
-
-
Torralba, A.1
Efros, A.2
-
36
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
1
-
P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and Composing Robust Features with Denoising Autoencoders. In ICML, 2008. 1
-
(2008)
ICML
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
-
37
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
2, 3, 5, 6
-
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. Journal of Machine Learning Research, 11: 3371-3408, 2010. 2, 3, 5, 6
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.-A.5
-
38
-
-
84906489727
-
Exploiting low-rank structure from latent domains for domain generalization
-
2, 7, 8
-
Z. Xu, W. Li, L. Niu, and D. Xu. Exploiting Low-Rank Structure from Latent Domains for Domain Generalization. In ECCV, pages 628-643, 2014. 2, 7, 8
-
(2014)
ECCV
, pp. 628-643
-
-
Xu, Z.1
Li, W.2
Niu, L.3
Xu, D.4
|