메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 2551-2559

Domain generalization for object recognition with multi-task autoencoders

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; BENCHMARKING; COMPUTER VISION; IMAGE RECOGNITION; LEARNING SYSTEMS;

EID: 84973915327     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.293     Document Type: Conference Paper
Times cited : (784)

References (38)
  • 1
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • 2
    • A. Argyriou, T. Evgeniou, and M. Pontil. Convex Multi-Task Feature Learning. Machine Learning, 73 (3): 243-272, 2008. 2
    • (2008) Machine Learning , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 5
    • 84864073449 scopus 로고    scopus 로고
    • Greedy layer-wise training of deep networks
    • 1, 2, 5
    • Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy Layer-Wise Training of Deep Networks. In NIPS, pages 153-160, 2007. 1, 2, 5
    • (2007) NIPS , pp. 153-160
    • Bengio, Y.1    Lamblin, P.2    Popovici, D.3    Larochelle, H.4
  • 6
    • 85162492909 scopus 로고    scopus 로고
    • Generalizing from several related classification tasks to a new unlabeled sample
    • 1, 2
    • G. Blanchard, G. Lee, and C. Scott. Generalizing from Several Related Classification Tasks to a New Unlabeled Sample. In NIPS, volume 1, pages 2178-2186, 2011. 1, 2
    • (2011) NIPS , vol.1 , pp. 2178-2186
    • Blanchard, G.1    Lee, G.2    Scott, C.3
  • 7
    • 0024220237 scopus 로고
    • Auto-association by multilayer perceptrons and singular value decomposition
    • 2
    • H. Bourlard and Y. Kamp. Auto-Association by Multilayer Perceptrons and Singular Value Decomposition. Biological Cybernetics, 59: 291-294, 1988. 2
    • (1988) Biological Cybernetics , vol.59 , pp. 291-294
    • Bourlard, H.1    Kamp, Y.2
  • 8
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • 1, 2, 3
    • R. Caruana. Multitask Learning. Machine Learning, 28: 41-75, 1997. 1, 2, 3
    • (1997) Machine Learning , vol.28 , pp. 41-75
    • Caruana, R.1
  • 9
    • 84867129067 scopus 로고    scopus 로고
    • Marginalized denoising autoencoders for domain adaptation
    • 2
    • M. Chen, Z. Xu, K. Weinberger, and F. Sha. Marginalized Denoising Autoencoders for Domain Adaptation. In ICML, pages 767-774, 2012. 2
    • (2012) ICML , pp. 767-774
    • Chen, M.1    Xu, Z.2    Weinberger, K.3    Sha, F.4
  • 10
    • 77956006912 scopus 로고    scopus 로고
    • Exploiting hierarchical context on a large database of object categories
    • 4
    • M. J. Choi, J. J. Lim, A. Torralba, and A. S. Willsky. Exploiting hierarchical context on a large database of object categories. In CVPR, pages 129-136, 2010. 4
    • (2010) CVPR , pp. 129-136
    • Choi, M.J.1    Lim, J.J.2    Torralba, A.3    Willsky, A.S.4
  • 11
    • 84866714584 scopus 로고    scopus 로고
    • Multi-column deep neural network for image classification
    • 1
    • D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural network for image classification. In CVPR, pages 3642-3649, 2012. 1
    • (2012) CVPR , pp. 3642-3649
    • Ciresan, D.1    Meier, U.2    Schmidhuber, J.3
  • 12
    • 84964085441 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • 5
    • K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector machines. JMLR, 2: 265-292, 2001. 5
    • (2001) JMLR , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 13
    • 84906332834 scopus 로고    scopus 로고
    • DeCAF: A deep convolutional activation feature for generic visual recognition
    • 2, 7
    • J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition. In ICML, pages 647-655, 2014. 2, 7
    • (2014) ICML , pp. 647-655
    • Donahue, J.1    Jia, Y.2    Vinyals, O.3    Hoffman, J.4    Zhang, N.5    Tzeng, E.6    Darrell, T.7
  • 15
    • 50949133669 scopus 로고    scopus 로고
    • LIBLINEAR: A library for large linear classification
    • 5
    • R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A Library for Large Linear Classification. JMLR, 9: 1871-1874, 2008. 5
    • (2008) JMLR , vol.9 , pp. 1871-1874
    • Fan, R.-E.1    Chang, K.-W.2    Hsieh, C.-J.3    Wang, X.-R.4    Lin, C.-J.5
  • 16
    • 84898795612 scopus 로고    scopus 로고
    • Unbiased metric learning: On the utilization of multiple datasets and web images for softening bias
    • 2, 7
    • C. Fang, Y. Xu, and D. N. Rockmore. Unbiased Metric Learning: On the Utilization of Multiple Datasets and Web Images for Softening Bias. In ICCV, pages 1657-1664, 2013. 2, 7
    • (2013) ICCV , pp. 1657-1664
    • Fang, C.1    Xu, Y.2    Rockmore, D.N.3
  • 17
    • 84905233815 scopus 로고    scopus 로고
    • Deep hybrid networks with good out-of-sample object recognition
    • 2
    • M. Ghifary, W. B. Kleijn, and M. Zhang. Deep hybrid networks with good out-of-sample object recognition. In ICASSP, pages 5437-5441, 2014. 2
    • (2014) ICASSP , pp. 5437-5441
    • Ghifary, M.1    Kleijn, W.B.2    Zhang, M.3
  • 18
    • 84899010695 scopus 로고    scopus 로고
    • Reshaping visual datasets for domain adaptation
    • 1
    • B. Gong, K. Grauman, and F. Sha. Reshaping Visual Datasets for Domain Adaptation. In NIPS, pages 1286-1294, 2013. 1
    • (2013) NIPS , pp. 1286-1294
    • Gong, B.1    Grauman, K.2    Sha, F.3
  • 19
    • 84866657270 scopus 로고    scopus 로고
    • Geodesic flow kernel for unsupervised domain adaptation
    • 7
    • B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic Flow Kernel for Unsupervised Domain Adaptation. In CVPR, pages 2066-2073, 2012. 7
    • (2012) CVPR , pp. 2066-2073
    • Gong, B.1    Shi, Y.2    Sha, F.3    Grauman, K.4
  • 23
    • 84878919540 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • 1, 6
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. In NIPS, volume 25, pages 1106-1114, 2012. 1, 6
    • (2012) NIPS , vol.25 , pp. 1106-1114
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 24
    • 0032203257 scopus 로고    scopus 로고
    • Gradientbased learning applied to document recognition
    • 4
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbased learning applied to document recognition. In Proceedings of the IEEE, volume 86, pages 2278-2324, 1998. 4
    • (1998) Proceedings of the IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 25
    • 0042441074 scopus 로고    scopus 로고
    • Analyzing appearance and contour based methods for object categorization
    • 4
    • B. Leibe and B. Schiele. Analyzing appearance and contour based methods for object categorization. In CVPR, pages 409-415, 2003. 4
    • (2003) CVPR , pp. 409-415
    • Leibe, B.1    Schiele, B.2
  • 26
    • 84897517066 scopus 로고    scopus 로고
    • Domain generalization via invariant feature representation
    • 1, 2, 5
    • K. Muandet, D. Balduzzi, and B. Schölkopf. Domain Generalization via Invariant Feature Representation. In ICML, pages 10-18, 2013. 1, 2, 5
    • (2013) ICML , pp. 10-18
    • Muandet, K.1    Balduzzi, D.2    Schölkopf, B.3
  • 27
    • 80053460450 scopus 로고    scopus 로고
    • Contractive auto-encoders: Explicit invariance during feature extraction
    • 2, 5, 6
    • S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. Contractive Auto-Encoders: Explicit Invariance During Feature Extraction. In ICML, number 1, pages 833-840, 2011. 2, 5, 6
    • (2011) ICML , Issue.1 , pp. 833-840
    • Rifai, S.1    Vincent, P.2    Muller, X.3    Glorot, X.4    Bengio, Y.5
  • 29
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • 2
    • D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. Nature, 323: 533-536, 1986. 2
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 30
    • 39749186006 scopus 로고    scopus 로고
    • LabelMe: A database and web-based tool for image annotation
    • 4
    • B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. LabelMe: A database and web-based tool for image annotation. In IJCV, volume 77, pages 157-173. 2008. 4
    • (2008) IJCV , vol.77 , pp. 157-173
    • Russell, B.C.1    Torralba, A.2    Murphy, K.P.3    Freeman, W.T.4
  • 31
    • 78149318752 scopus 로고    scopus 로고
    • Adapting visual cateogry models to new domains
    • 1, 2, 4, 7
    • K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting Visual Cateogry Models to New Domains. In ECCV, pages 213-226, 2010. 1, 2, 4, 7
    • (2010) ECCV , pp. 213-226
    • Saenko, K.1    Kulis, B.2    Fritz, M.3    Darrell, T.4
  • 32
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • 1
    • I. Sutskever, O. Vinyals, and Q. Le. Sequence to Sequence Learning with Neural Networks. In NIPS, 2014. 1
    • (2014) NIPS
    • Sutskever, I.1    Vinyals, O.2    Le, Q.3
  • 33
    • 77956542104 scopus 로고    scopus 로고
    • Deep networks for robust visual recognition
    • 2
    • Y. Tang and C. Eliasmith. Deep networks for robust visual recognition. In ICML, pages 1055-1062, 2010. 2
    • (2010) ICML , pp. 1055-1062
    • Tang, Y.1    Eliasmith, C.2
  • 34
    • 85031124575 scopus 로고    scopus 로고
    • Is learning the n-th thing any easier than learning the first?
    • 1, 2
    • S. Thrun. Is learning the n-th thing any easier than learning the first? In NIPS, pages 640-646, 1996. 1, 2
    • (1996) NIPS , pp. 640-646
    • Thrun, S.1
  • 35
    • 80052908300 scopus 로고    scopus 로고
    • Unbiased look at dataset bias
    • 1, 8
    • A. Torralba and A. Efros. Unbiased look at dataset bias. In CVPR, pages 1521-1528, 2011. 1, 8
    • (2011) CVPR , pp. 1521-1528
    • Torralba, A.1    Efros, A.2
  • 36
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • 1
    • P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and Composing Robust Features with Denoising Autoencoders. In ICML, 2008. 1
    • (2008) ICML
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.-A.4
  • 37
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • 2, 3, 5, 6
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. Journal of Machine Learning Research, 11: 3371-3408, 2010. 2, 3, 5, 6
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 38
    • 84906489727 scopus 로고    scopus 로고
    • Exploiting low-rank structure from latent domains for domain generalization
    • 2, 7, 8
    • Z. Xu, W. Li, L. Niu, and D. Xu. Exploiting Low-Rank Structure from Latent Domains for Domain Generalization. In ECCV, pages 628-643, 2014. 2, 7, 8
    • (2014) ECCV , pp. 628-643
    • Xu, Z.1    Li, W.2    Niu, L.3    Xu, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.