메뉴 건너뛰기




Volumn , Issue , 2015, Pages 766-774

DIAS: A disassemble-assemble framework for highly sparse text clustering

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTER ANALYSIS; DISTRIBUTED COMPUTER SYSTEMS; INFORMATION THEORY;

EID: 84961956889     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611974010.86     Document Type: Conference Paper
Times cited : (26)

References (32)
  • 3
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • R. Agrawal, J. Gehrke, D. Gunopulos, and P. Ragha-van. Automatic subspace clustering of high dimensional data for data mining applications. In SIGMOD, pages 94-105, 1998.
    • (1998) SIGMOD , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Ragha-Van, P.4
  • 4
  • 5
    • 0029546874 scopus 로고
    • Using linear algebra for intelligent information retrieval
    • M. Berry, S. Dumais, and G. O'Brien. Using linear algebra for intelligent information retrieval. SIAM Review, 37(4):573-595, 1995.
    • (1995) SIAM Review , vol.37 , Issue.4 , pp. 573-595
    • Berry, M.1    Dumais, S.2    O'Brien, G.3
  • 7
    • 84877693856 scopus 로고    scopus 로고
    • Sail: Summation-based incremental learning for information-theoretic text clustering
    • J. Cao, Z. Wu, J. Wu, and H. Xiong. Sail: Summation-based incremental learning for information-theoretic text clustering. IEEE Transactions on Cybernetics, 43(2):570-584, 2013.
    • (2013) IEEE Transactions on Cybernetics , vol.43 , Issue.2 , pp. 570-584
    • Cao, J.1    Wu, Z.2    Wu, J.3    Xiong, H.4
  • 20
    • 0042826822 scopus 로고    scopus 로고
    • Independent componen-t analysis: Algorithms and applications
    • A. Hyvarinen and E. Oja. Independent componen-t analysis: algorithms and applications. Neural Networks, 13(4):411-430, 2000.
    • (2000) Neural Networks , vol.13 , Issue.4 , pp. 411-430
    • Hyvarinen, A.1    Oja, E.2
  • 24
    • 1942450753 scopus 로고    scopus 로고
    • Cluster ensembles - - a knowledge reuse framework for combining partitions
    • A. Stiehl and J. Ghosh. Cluster ensembles - - a knowledge reuse framework for combining partitions. Journal of Machine Learning Research, 2002.
    • (2002) Journal of Machine Learning Research
    • Stiehl, A.1    Ghosh, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.