메뉴 건너뛰기




Volumn 2015-August, Issue , 2015, Pages 715-724

Spectral ensemble clustering

Author keywords

Co association matrix; Ensemble clustering; K means

Indexed keywords

CLUSTER ANALYSIS; CLUSTERING ALGORITHMS; COBALT COMPOUNDS; COMPUTATIONAL COMPLEXITY; DATA MINING; MATRIX ALGEBRA; PARALLEL PROCESSING SYSTEMS; VIRTUAL REALITY;

EID: 84954187531     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2783258.2783287     Document Type: Conference Paper
Times cited : (144)

References (33)
  • 1
    • 36448962361 scopus 로고    scopus 로고
    • Cumulative voting consensus method for partitions with variable number of clusters
    • H. Ayad and M. Kamel. Cumulative voting consensus method for partitions with variable number of clusters. PAMI, 30(1):160-173, 2008.
    • (2008) PAMI , vol.30 , Issue.1 , pp. 160-173
    • Ayad, H.1    Kamel, M.2
  • 5
    • 84867823027 scopus 로고    scopus 로고
    • Consensus clustering based on a new probabilistic rand index with application to subtopic retrieval
    • C. Carpineto and G. Romano. Consensus clustering based on a new probabilistic rand index with application to subtopic retrieval. PAMI, 2012.
    • (2012) PAMI
    • Carpineto, C.1    Romano, G.2
  • 6
    • 12244256379 scopus 로고    scopus 로고
    • Kernel k-means: Spectral clustering and normalized cuts
    • I. Dhillon, Y. Guan, and B. Kulis. Kernel k-means: Spectral clustering and normalized cuts. In Proceedings of KDD, 2004.
    • (2004) Proceedings of KDD
    • Dhillon, I.1    Guan, Y.2    Kulis, B.3
  • 7
    • 67549123292 scopus 로고    scopus 로고
    • Weighted cluster ensembles: Methods and analysis
    • C. Domeniconi and M. Al-Razgan. Weighted cluster ensembles: Methods and analysis. TKDD, 2009.
    • (2009) TKDD
    • Domeniconi, C.1    Al-Razgan, M.2
  • 8
    • 14344258244 scopus 로고    scopus 로고
    • Solving cluster ensemble problems by bipartite graph partitioning
    • X. Z. Fern and C. E. Brodley. Solving cluster ensemble problems by bipartite graph partitioning. In Proceedings of ICML, 2004.
    • (2004) Proceedings of ICML
    • Fern, X.Z.1    Brodley, C.E.2
  • 9
    • 0037963197 scopus 로고    scopus 로고
    • Path-based clustering for grouping of smooth curves and texture segmentation
    • R. Fischer and J. Buhmann. Path-based clustering for grouping of smooth curves and texture segmentation. PAMI, 2003.
    • (2003) PAMI
    • Fischer, R.1    Buhmann, J.2
  • 12
    • 49749129595 scopus 로고    scopus 로고
    • Solving consensus and semi-supervised clustering problems using nonnegative matrix factorization
    • T. Li, D. Chris, and I. Michael. Solving consensus and semi-supervised clustering problems using nonnegative matrix factorization. Proceedings of ICDM, 2007.
    • (2007) Proceedings of ICDM
    • Li, T.1    Chris, D.2    Michael, I.3
  • 15
    • 57749168813 scopus 로고    scopus 로고
    • From comparing clusterings to combining clusterings
    • AAAI Press
    • Z. Lu, Y. Peng, and J. Xiao. From comparing clusterings to combining clusterings. In Proceedings of AAAI. AAAI Press, 2008.
    • (2008) Proceedings of AAAI
    • Lu, Z.1    Peng, Y.2    Xiao, J.3
  • 17
    • 0042763812 scopus 로고    scopus 로고
    • Reinterpreting the category utility function
    • B. Mirkin. Reinterpreting the category utility function. Machine Learning, 2001.
    • (2001) Machine Learning
    • Mirkin, B.1
  • 19
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data
    • S. Monti, P. Tamayo, J. Mesirov, and T. Golub. Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Machine learning, 2003.
    • (2003) Machine Learning
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3    Golub, T.4
  • 22
    • 1942450753 scopus 로고    scopus 로고
    • Cluster ensembles - A knowledge reuse framework for combining partitions
    • A. Strehl and J. Ghosh. Cluster ensembles - a knowledge reuse framework for combining partitions. Journal of Machine Learning Research, 2002.
    • (2002) Journal of Machine Learning Research
    • Strehl, A.1    Ghosh, J.2
  • 27
    • 58249083744 scopus 로고    scopus 로고
    • Clustering aggregation by probability accumulation
    • X. Wang, C. Yang, and J. Zhou. Clustering aggregation by probability accumulation. Pattern Recognition, 2009.
    • (2009) Pattern Recognition
    • Wang, X.1    Yang, C.2    Zhou, J.3
  • 28
    • 84896061966 scopus 로고    scopus 로고
    • A theoretic framework of k-means-based consensus clustering
    • J. Wu, H. Liu, H. Xiong, and J. Cao. A theoretic framework of k-means-based consensus clustering. In Proceedings of IJCAI, 2013.
    • (2013) Proceedings of IJCAI
    • Wu, J.1    Liu, H.2    Xiong, H.3    Cao, J.4
  • 29
    • 70350647693 scopus 로고    scopus 로고
    • Adapting the right measures for k-means clustering
    • J. Wu, H. Xiong, and J. Chen. Adapting the right measures for k-means clustering. In Proceedings of KDD, 2009.
    • (2009) Proceedings of KDD
    • Wu, J.1    Xiong, H.2    Chen, J.3
  • 30
    • 84907021673 scopus 로고    scopus 로고
    • Class-distribution regularized consensus maximization for alleviating overfitting in model combination
    • S. Xie, J. Gao, W. Fan, D. Turaga, and P. Yu. Class-distribution regularized consensus maximization for alleviating overfitting in model combination. In Proceedings of KDD, 2014.
    • (2014) Proceedings of KDD
    • Xie, S.1    Gao, J.2    Fan, W.3    Turaga, D.4    Yu, P.5
  • 33


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.