-
1
-
-
84897106158
-
Tyrosine phosphatase PTPN22: Multifunctional regulator of immune signaling, development, and disease
-
Bottini N, Peterson EJ. Tyrosine phosphatase PTPN22: multifunctional regulator of immune signaling, development, and disease. Annu Rev Immunol 2014;32:83-119
-
(2014)
Annu Rev Immunol
, vol.32
, pp. 83-119
-
-
Bottini, N.1
Peterson, E.J.2
-
2
-
-
77951926420
-
Etiology of type 1 diabetes
-
Todd JA. Etiology of type 1 diabetes. Immunity 2010;32:457-467
-
(2010)
Immunity
, vol.32
, pp. 457-467
-
-
Todd, J.A.1
-
3
-
-
57749208427
-
Gene-gene interactions in the NOD mouse model of type 1 diabetes
-
Ridgway WM, Peterson LB, Todd JA, et al. Gene-gene interactions in the NOD mouse model of type 1 diabetes. Adv Immunol 2008;100:151-175
-
(2008)
Adv Immunol
, vol.100
, pp. 151-175
-
-
Ridgway, W.M.1
Peterson, L.B.2
Todd, J.A.3
-
4
-
-
80052239824
-
The autoimmune disease-associated PTPN22 variant promotes calpain-mediated Lyp/Pep degradation associated with lymphocyte and dendritic cell hyperresponsiveness
-
Zhang J, Zahir N, Jiang Q, et al. The autoimmune disease-associated PTPN22 variant promotes calpain-mediated Lyp/Pep degradation associated with lymphocyte and dendritic cell hyperresponsiveness. Nat Genet 2011;43:902-907
-
(2011)
Nat Genet
, vol.43
, pp. 902-907
-
-
Zhang, J.1
Zahir, N.2
Jiang, Q.3
-
5
-
-
84877115482
-
A disease-associated PTPN22 variant promotes systemic autoimmunity in murine models
-
Dai X, James RG, Habib T, et al. A disease-associated PTPN22 variant promotes systemic autoimmunity in murine models. J Clin Invest 2013;123:2024-2036
-
(2013)
J Clin Invest
, vol.123
, pp. 2024-2036
-
-
Dai, X.1
James, R.G.2
Habib, T.3
-
6
-
-
84880733694
-
The autoimmunity-associated gene PTPN22 potentiates toll-like receptor-driven, type 1 interferon-dependent immunity
-
Wang Y, Shaked I, Stanford SM, et al. The autoimmunity-associated gene PTPN22 potentiates toll-like receptor-driven, type 1 interferon-dependent immunity. Immunity 2013;39:111-122
-
(2013)
Immunity
, vol.39
, pp. 111-122
-
-
Wang, Y.1
Shaked, I.2
Stanford, S.M.3
-
7
-
-
84921295403
-
Mouse genome engineering via CRISPRCas9 for study of immune function
-
Pelletier S, Gingras S, Green DR. Mouse genome engineering via CRISPRCas9 for study of immune function. Immunity 2015;42:18-27
-
(2015)
Immunity
, vol.42
, pp. 18-27
-
-
Pelletier, S.1
Gingras, S.2
Green, D.R.3
-
8
-
-
0034652317
-
Early expression of antiinsulin autoantibodies of humans and the NOD mouse: Evidence for early determination of subsequent diabetes
-
Yu L, Robles DT, Abiru N, et al. Early expression of antiinsulin autoantibodies of humans and the NOD mouse: evidence for early determination of subsequent diabetes. Proc Natl Acad Sci U S A 2000;97:1701-1706
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, pp. 1701-1706
-
-
Yu, L.1
Robles, D.T.2
Abiru, N.3
-
9
-
-
84890561320
-
Themis sets the signal threshold for positive and negative selection in T-cell development
-
Fu G, Casas J, Rigaud S, et al. Themis sets the signal threshold for positive and negative selection in T-cell development. Nature 2013;504:441-445
-
(2013)
Nature
, vol.504
, pp. 441-445
-
-
Fu, G.1
Casas, J.2
Rigaud, S.3
-
10
-
-
0942279640
-
PEST domainenriched tyrosine phosphatase (PEP) regulation of effector/memory T cells
-
Hasegawa K, Martin F, Huang G, Tumas D, Diehl L, Chan AC. PEST domainenriched tyrosine phosphatase (PEP) regulation of effector/memory T cells. Science 2004;303:685-689
-
(2004)
Science
, vol.303
, pp. 685-689
-
-
Hasegawa, K.1
Martin, F.2
Huang, G.3
Tumas, D.4
Diehl, L.5
Chan, A.C.6
-
11
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013;339:819-823
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
-
12
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science 2013;339:823-826
-
(2013)
Science
, vol.339
, pp. 823-826
-
-
Mali, P.1
Yang, L.2
Esvelt, K.M.3
-
13
-
-
84877707375
-
One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering
-
Wang H, Yang H, Shivalila CS, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 2013;153:910-918
-
(2013)
Cell
, vol.153
, pp. 910-918
-
-
Wang, H.1
Yang, H.2
Shivalila, C.S.3
-
14
-
-
84884289608
-
One-step generation of mice carrying reporter and conditional alleles by CRISPR/Casmediated genome engineering
-
Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Casmediated genome engineering. Cell 2013;154:1370-1379
-
(2013)
Cell
, vol.154
, pp. 1370-1379
-
-
Yang, H.1
Wang, H.2
Shivalila, C.S.3
Cheng, A.W.4
Shi, L.5
Jaenisch, R.6
-
16
-
-
84937517806
-
Non-HLA gene effects on the disease process of type 1 diabetes: From HLA susceptibility to overt disease
-
Lempainen J, Laine AP, Hammais A, et al. Non-HLA gene effects on the disease process of type 1 diabetes: From HLA susceptibility to overt disease. J Autoimmun 2015;61:45-53
-
(2015)
J Autoimmun
, vol.61
, pp. 45-53
-
-
Lempainen, J.1
Laine, A.P.2
Hammais, A.3
-
18
-
-
0030659604
-
Theoretical and empirical issues for markerassisted breeding of congenic mouse strains
-
Markel P, Shu P, Ebeling C, et al. Theoretical and empirical issues for markerassisted breeding of congenic mouse strains. Nat Genet 1997;17:280-284
-
(1997)
Nat Genet
, vol.17
, pp. 280-284
-
-
Markel, P.1
Shu, P.2
Ebeling, C.3
-
19
-
-
67650432118
-
Validated germline-competent embryonic stem cell lines from nonobese diabetic mice
-
Nichols J, Jones K, Phillips JM, et al. Validated germline-competent embryonic stem cell lines from nonobese diabetic mice. Nat Med 2009;15:814-818
-
(2009)
Nat Med
, vol.15
, pp. 814-818
-
-
Nichols, J.1
Jones, K.2
Phillips, J.M.3
-
20
-
-
84962159733
-
A SNP in the immunoregulatory molecule CTLA-4 controls mRNA splicing in vivo but does not alter diabetes susceptibility in the NOD mouse
-
Jakubczik F, Jones K, Nichols J, Mansfield W, Cooke A, Holmes N. A SNP in the immunoregulatory molecule CTLA-4 controls mRNA splicing in vivo but does not alter diabetes susceptibility in the NOD mouse. Diabetes 2016;65:120-128
-
(2016)
Diabetes
, vol.65
, pp. 120-128
-
-
Jakubczik, F.1
Jones, K.2
Nichols, J.3
Mansfield, W.4
Cooke, A.5
Holmes, N.6
-
21
-
-
84891791730
-
Gene targeting in NOD mouse embryos using zinc-finger nucleases
-
Chen YG, Forsberg MH, Khaja S, Ciecko AE, Hessner MJ, Geurts AM. Gene targeting in NOD mouse embryos using zinc-finger nucleases. Diabetes 2014;63:68-74
-
(2014)
Diabetes
, vol.63
, pp. 68-74
-
-
Chen, Y.G.1
Forsberg, M.H.2
Khaja, S.3
Ciecko, A.E.4
Hessner, M.J.5
Geurts, A.M.6
-
22
-
-
84902827660
-
Efficient genetic manipulation of the NOD-Rag1-/-IL2RgammaC-null mouse by combining in vitro fertilization and CRISPR/Cas9 technology
-
Li F, Cowley DO, Banner D, Holle E, Zhang L, Su L. Efficient genetic manipulation of the NOD-Rag1-/-IL2RgammaC-null mouse by combining in vitro fertilization and CRISPR/Cas9 technology. Sci Rep 2014;4:5290
-
(2014)
Sci Rep
, vol.4
, pp. 5290
-
-
Li, F.1
Cowley, D.O.2
Banner, D.3
Holle, E.4
Zhang, L.5
Su, L.6
-
23
-
-
84896906617
-
Antigen presentation in the autoimmune diabetes of the NOD mouse
-
Unanue ER. Antigen presentation in the autoimmune diabetes of the NOD mouse. Annu Rev Immunol 2014;32:579-608
-
(2014)
Annu Rev Immunol
, vol.32
, pp. 579-608
-
-
Unanue, E.R.1
-
24
-
-
28444469783
-
Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant
-
Vang T, Congia M, Macis MD, et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat Genet 2005;37:1317-1319
-
(2005)
Nat Genet
, vol.37
, pp. 1317-1319
-
-
Vang, T.1
Congia, M.2
Macis, M.D.3
-
25
-
-
84874424163
-
PTPN22 silencing in the NOD model indicates the type 1 diabetes-associated allele is not a loss-of-function variant
-
Zheng P, Kissler S. PTPN22 silencing in the NOD model indicates the type 1 diabetes-associated allele is not a loss-of-function variant. Diabetes 2013;62: 896-904
-
(2013)
Diabetes
, vol.62
, pp. 896-904
-
-
Zheng, P.1
Kissler, S.2
|