메뉴 건너뛰기




Volumn 8, Issue 3, 2015, Pages

Comparative genome analysis reveals divergent genome size evolution in a carnivorous plant genus

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84946811623     PISSN: None     EISSN: 19403372     Source Type: Journal    
DOI: 10.3835/plantgenome2015.04.0021     Document Type: Article
Times cited : (47)

References (72)
  • 2
    • 59949097135 scopus 로고    scopus 로고
    • Natu- ral selection on gene function drives the evolution of LTR retrotransposon families in the rice genome
    • Baucom, R.S., J.C. Estill, J. Leebens-Mack, and J.L. Bennetzen. 2009b. Natu- ral selection on gene function drives the evolution of LTR retrotransposon families in the rice genome. Genome Res. 19:243-254. doi:10.1101/ gr.083360.108
    • (2009) Genome Res , vol.19 , pp. 243-254
    • Baucom, R.S.1    Estill, J.C.2    Leebens-Mack, J.3    Bennetzen, J.L.4
  • 3
    • 0037381673 scopus 로고    scopus 로고
    • Comparisons with Caenorhabditis (Approximately 100 Mb) and Drosophila (approximately 175 Mb) using flow cytometry show genome size in Arabidopsis to be approximately 157 Mb and thus approximately 25% larger than the Arabidopsis genome initiative estimate of approximately 125 Mb
    • Bennett, M.D., I.J. Leitch, H.J. Price, and J.S. Johnston. 2003. Comparisons with Caenorhabditis (approximately 100 Mb) and Drosophila (approximately 175 Mb) using flow cytometry show genome size in Arabidopsis to be approximately 157 Mb and thus approximately 25% larger than the Arabidopsis genome initiative estimate of approximately 125 Mb. Ann. Bot. (Lond.) 91:547-557. doi:10.1093/aob/mcg057
    • (2003) Ann. Bot. (Lond.) , vol.91 , pp. 547-557
    • Bennett, M.D.1    Leitch, I.J.2    Price, H.J.3    Johnston, J.S.4
  • 4
    • 84899743736 scopus 로고    scopus 로고
    • The contributions of transposable elements to the structure, function, and evolution of plant genomes
    • Bennetzen, J.L., and H. Wang. 2014. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu. Rev. Plant Biol. 65:505-530. doi:10.1146/annurevarplant-050213-035811
    • (2014) Annu. Rev. Plant Biol , vol.65 , pp. 505-530
    • Bennetzen, J.L.1    Wang, H.2
  • 6
    • 43949138227 scopus 로고    scopus 로고
    • Blast2GO: A comprehensive suite for functional analysis in plant genomics
    • Conesa, A., and S. Gotz. 2008. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics 2008:619832. doi:10.1155/2008/619832
    • (2008) Int. J. Plant Genomics , vol.2008 , pp. 619832
    • Conesa, A.1    Gotz, S.2
  • 8
    • 84876406754 scopus 로고    scopus 로고
    • Sexual polyploidization in plants-cytological mechanisms and molecular regulation
    • De Storme, N., and D. Geelen. 2013. Sexual polyploidization in plants-cytological mechanisms and molecular regulation. New Phytol. 198:670-684. doi:10.1111/nph.12184
    • (2013) New Phytol , vol.198 , pp. 670-684
    • De Storme, N.1    Geelen, D.2
  • 9
    • 0036061848 scopus 로고    scopus 로고
    • Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis
    • Devos, K.M., J.K.M. Brown, and J.L. Bennetzen. 2002. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res. 12:1075-1079. doi:10.1101/gr.132102
    • (2002) Genome Res , vol.12 , pp. 1075-1079
    • Devos, K.M.1    Brown, J.2    Bennetzen, J.L.3
  • 10
    • 38449104378 scopus 로고    scopus 로고
    • Estimation of nuclear DNA content in plants using flow cytometry
    • Dolezel, J., J. Greilhuber, and J. Suda. 2007. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2:2233-2244. doi:10.1038/nprot.2007.310
    • (2007) Nat. Protoc , vol.2 , pp. 2233-2244
    • Dolezel, J.1    Greilhuber, J.2    Suda, J.3
  • 11
    • 3042666256 scopus 로고    scopus 로고
    • MUSCLE: Multiple sequence alignment with high accuracy and high throughput
    • Edgar, R.C. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792-1797. doi:10.1093/nar/gkh340
    • (2004) Nucleic Acids Res , vol.32 , pp. 1792-1797
    • Edgar, R.C.1
  • 12
    • 84868534630 scopus 로고    scopus 로고
    • Presidential address. Transposable elements, epigenetics, and genome evolution
    • Fedoroff, N.V. 2012. Presidential address. Transposable elements, epigenetics, and genome evolution. Science 338:758-767. doi:10.1126/science.338.6108.758
    • (2012) Science , vol.338 , pp. 758-767
    • Fedoroff, N.V.1
  • 14
    • 84922971383 scopus 로고    scopus 로고
    • Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms
    • Fleischmann, A., T.P. Michael, F. Rivadavia, A. Sousa, W. Wang, E.M. Temsch, J. Greilhuber, K.F. Muller, and G. Heubl. 2014. Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms. Ann. Bot. (Lond.) 114:1651-1663. doi:10.1093/aob/mcu189
    • (2014) Ann. Bot. (Lond.) , vol.114 , pp. 1651-1663
    • Fleischmann, A.1    Michael, T.P.2    Rivadavia, F.3    Sousa, A.4    Wang, W.5    Temsch, E.M.6    Greilhuber, J.7    Muller, K.F.8    Heubl, G.9
  • 15
    • 77953325598 scopus 로고    scopus 로고
    • Phylogenetics and character evolution in the carnivorous plant genus Genlisea A. St.-Hil. (Lentibulariaceae)
    • Fleischmann, A., B. Schaferhoff, G. Heubl, F. Rivadavia, W. Barthlott, and K.F. Muller. 2010. Phylogenetics and character evolution in the carnivorous plant genus Genlisea A. St.-Hil. (Lentibulariaceae). Mol. Phylogenet. Evol. 56:768-783. doi:10.1016/j.ympev.2010.03.009
    • (2010) Mol. Phylogenet. Evol , vol.56 , pp. 768-783
    • Fleischmann, A.1    Schaferhoff, B.2    Heubl, G.3    Rivadavia, F.4    Barthlott, W.5    Muller, K.F.6
  • 16
    • 0020611575 scopus 로고
    • Rapid flow cytometric analysis of the cell cycle in intact plant tissues
    • Galbraith, D.W., K.R. Harkins, J.M. Maddox, N.M. Ayres, D.P. Sharma, and E. Firoozabady. 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049-1051. doi:10.1126/science.220.4601.1049
    • (1983) Science , vol.220 , pp. 1049-1051
    • Galbraith, D.W.1    Harkins, K.R.2    Maddox, J.M.3    Ayres, N.M.4    Sharma, D.P.5    Firoozabady, E.6
  • 17
    • 0035090476 scopus 로고    scopus 로고
    • Coincidence, coevolution, or causation? DNA content, cellsize, and the C-value enigma
    • Gregory, T.R. 2001. Coincidence, coevolution, or causation? DNA content, cellsize, and the C-value enigma. Biol. Rev. Camb. Philos. Soc. 76:65-101. doi:10.1017/S1464793100005595
    • (2001) Biol. Rev. Camb. Philos. Soc , vol.76 , pp. 65-101
    • Gregory, T.R.1
  • 18
    • 33745888167 scopus 로고    scopus 로고
    • Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size. Plant Biol
    • Greilhuber, J., T. Borsch, K. Müller, A. Worberg, S. Porembski, and W. Barthlott. 2006. Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size. Plant Biol. (Stuttg.) 8:770-777. doi:10.1055/s-2006-924101
    • (2006) (Stuttg.) , vol.8 , pp. 770-777
    • Greilhuber, J.1    Borsch, T.2    Müller, K.3    Worberg, A.4    Porembski, S.5    Barthlott, W.6
  • 19
    • 84860135249 scopus 로고    scopus 로고
    • The evolution of genome size variation in drumstick onions (Allium subgenus Melanocrommyum)
    • Gurushidze, M., J. Fuchs, and F.R. Blattner. 2012. The evolution of genome size variation in drumstick onions (Allium subgenus Melanocrommyum). Syst. Bot. 37:96-104. doi:10.1600/036364412X616675
    • (2012) Syst. Bot , vol.37 , pp. 96-104
    • Gurushidze, M.1    Fuchs, J.2    Blattner, F.R.3
  • 20
    • 33749389724 scopus 로고    scopus 로고
    • Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium
    • Hawkins, J.S., H. Kim, J.D. Nason, R.A. Wing, and J.F. Wendel. 2006. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res. 16:1252-1261. doi:10.1101/gr.5282906
    • (2006) Genome Res , vol.16 , pp. 1252-1261
    • Hawkins, J.S.1    Kim, H.2    Nason, J.D.3    Wing, R.A.4    Wendel, J.F.5
  • 21
    • 43449099736 scopus 로고    scopus 로고
    • Genomic clues to the evolutionary success of polyploid plants
    • Hegarty, M.J., and J.S. Hiscock. 2008. Genomic clues to the evolutionary success of polyploid plants. Curr. Biol. 18:R435-R444. doi:10.1016/j.cub.2008.03.043
    • (2008) Curr. Biol , vol.18 , pp. R435-R444
    • Hegarty, M.J.1    Hiscock, J.S.2
  • 22
    • 0036927583 scopus 로고    scopus 로고
    • Physical map-based sizes of the centromeric regions of Arabidopsis thaliana chromosomes 1, 2, and 3
    • Hosouchi, T., N. Kumekawa, H. Tsuruoka, and H. Kotani. 2002. Physical map-based sizes of the centromeric regions of Arabidopsis thaliana chromosomes 1, 2, and 3. DNA Res. 9:117-121. doi:10.1093/dnares/9.4.117
    • (2002) DNA Res , vol.9 , pp. 117-121
    • Hosouchi, T.1    Kumekawa, N.2    Tsuruoka, H.3    Kotani, H.4
  • 23
    • 0037356770 scopus 로고    scopus 로고
    • Methylation of histone H3 in euchromatin of plant chromosomes depends on basic nuclear DNA content
    • Houben, A., D. Demidov, D. Gernand, A. Meister, C.R. Leach, and I. Schubert. 2003. Methylation of histone H3 in euchromatin of plant chromosomes depends on basic nuclear DNA content. Plant J. 33:967-973. doi:10.1046/j.1365-313X.2003.01681.x
    • (2003) Plant J , vol.33 , pp. 973
    • Houben, A.1    Demidov, D.2    Gernand, D.3    Meister, A.4    Leach, C.R.5    Schubert, I.6
  • 25
    • 0029100668 scopus 로고
    • Small genomes for better flyers
    • Hughes, A.L., and M.K. Hughes. 1995. Small genomes for better flyers. Nature 377:391. doi:10.1038/377391a0
    • (1995) Nature , vol.377 , pp. 391
    • Hughes, A.L.1    Hughes, M.K.2
  • 28
    • 0034675997 scopus 로고    scopus 로고
    • Species-specific double-strand break repair and genome evolution in plants
    • Kirik, A., S. Salomon, and H. Puchta. 2000. Species-specific double-strand break repair and genome evolution in plants. EMBO J. 19:5562-5566. doi:10.1093/emboj/19.20.5562
    • (2000) EMBO J , vol.19 , pp. 5562-5566
    • Kirik, A.1    Salomon, S.2    Puchta, H.3
  • 29
    • 56549086632 scopus 로고    scopus 로고
    • A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes
    • Kurtz, S., A. Narechania, J.C. Stein, and D. Ware. 2008. A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes. BMC Genomics 9:517. doi:10.1186/1471-2164-9-517
    • (2008) BMC Genomics , vol.9 , pp. 517
    • Kurtz, S.1    Narechania, A.2    Stein, J.C.3    Ware, D.4
  • 30
    • 84859210032 scopus 로고    scopus 로고
    • Fast gapped-read alignment with Bowtie 2. Nat
    • Langmead, B., and S.L. Salzberg. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9:357-359. doi:10.1038/nmeth.1923
    • (2012) Methods , vol.9 , pp. 357-359
    • Langmead, B.1    Salzberg, S.L.2
  • 31
  • 32
    • 84880094159 scopus 로고    scopus 로고
    • The miniature genome of a carnivorous plant Genlisea aurea contains a low number of genes and short noncoding sequences
    • Leushkin, E.V., R.A. Sutormin, E.R. Nabieva, A.A. Penin, A.S. Kondrashov, and M.D. Logacheva. 2013. The miniature genome of a carnivorous plant Genlisea aurea contains a low number of genes and short noncoding sequences. BMC Genomics 14:476. doi:10.1186/1471-2164-14-476
    • (2013) BMC Genomics , vol.14 , pp. 476
    • Leushkin, E.V.1    Sutormin, R.A.2    Nabieva, E.R.3    Penin, A.A.4    Kondrashov, A.S.5    Logacheva, M.D.6
  • 34
    • 0141519279 scopus 로고    scopus 로고
    • OrthoMCL: Identification of ortholog groups for eukaryotic genomes
    • Li, L., C.J. Stoeckert, and D. S. Roos. 2003. OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Res. 13:2178-2189. doi:10.1101/gr.1224503
    • (2003) Genome Res , vol.13 , pp. 2178-2189
    • Li, L.1    Stoeckert, C.J.2    Roos, D.S.3
  • 35
    • 84873505245 scopus 로고    scopus 로고
    • Switchgrass genomic diversity, ploidy, and evolution: Novel insights from a network-based SNP discovery protocol
    • Lu, F., A.E. Lipka, J. Glaubitz, R. Elshire, J.H. Cherney, M.D. Casler, E.S. Buckler, and D.E. Costich. 2013. Switchgrass genomic diversity, ploidy, and evolution: Novel insights from a network-based SNP discovery protocol. PLoS Genet. 9:e1003215. doi:10.1371/journal.pgen.1003215
    • (2013) Plos Genet , vol.9
    • Lu, F.1    Lipka, A.E.2    Glaubitz, J.3    Elshire, R.4    Cherney, J.H.5    Casler, M.D.6    Buckler, E.S.7    Costich, D.E.8
  • 36
    • 33645508488 scopus 로고    scopus 로고
    • Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species
    • Lysak, M.A., A. Berr, A. Pecinka, R. Schmidt, K. McBreen, and I. Schubert. 2006a. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc. Natl. Acad. Sci. USA 103:5224-5229. doi:10.1073/pnas.0510791103
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 5224-5229
    • Lysak, M.A.1    Berr, A.2    Pecinka, A.3    Schmidt, R.4    McBreen, K.5    Schubert, I.6
  • 37
    • 33745255708 scopus 로고    scopus 로고
    • Cytogenetic analyses of Arabidopsis
    • Lysak, M., P. Fransz, and I. Schubert. 2006b. Cytogenetic analyses of Arabidopsis. Methods Mol. Biol. 323:173-186.
    • (2006) Methods Mol. Biol , vol.323 , pp. 173-186
    • Lysak, M.1    Fransz, P.2    Schubert, I.3
  • 38
    • 77956810194 scopus 로고    scopus 로고
    • Fast diploidization in close mesopolyploid relatives of Arabidopsis
    • Mandakova, T., S. Joly, M. Krzywinski, K. Mummenhoff, and M.A. Lysak. 2010. Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell 22:2277-2290. doi:10.1105/tpc.110.074526
    • (2010) Plant Cell , vol.22 , pp. 2277-2290
    • Mandakova, T.1    Joly, S.2    Krzywinski, M.3    Mummenhoff, K.4    Lysak, M.A.5
  • 39
    • 84863642420 scopus 로고    scopus 로고
    • Recombination drives vertebrate genome contraction
    • Nam, K., and H. Ellegren. 2012. Recombination drives vertebrate genome contraction. PLoS Genet. 8:e1002680. doi:10.1371/journal.pgen.1002680
    • (2012) Plos Genet , vol.8
    • Nam, K.1    Ellegren, H.2
  • 40
    • 0037767281 scopus 로고    scopus 로고
    • Genome size evolution in puffer-fish: A comparative analysis of diodontid and tetraodontid pufferfish genomes
    • Neafsey, D.E., and S.R. Palumbi. 2003. Genome size evolution in puffer-fish: A comparative analysis of diodontid and tetraodontid pufferfish genomes. Genome Res. 13:821-830. doi:10.1101/gr.841703
    • (2003) Genome Res , vol.13 , pp. 821-830
    • Neafsey, D.E.1    Palumbi, S.R.2
  • 41
    • 77954854627 scopus 로고    scopus 로고
    • Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data
    • Novak, P., P. Neumann, and J. Macas. 2010. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 11:378. doi:10.1186/1471-2105-11-378
    • (2010) BMC Bioinformatics , vol.11 , pp. 378
    • Novak, P.1    Neumann, P.2    Macas, J.3
  • 42
    • 84875165671 scopus 로고    scopus 로고
    • Repeat Explorer: A Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads
    • Novak, P., P. Neumann, J. Pech, J. Steinhaisl, and J. Macas. 2013. Repeat Explorer: A Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29:792-793. doi:10.1093/bioinformatics/btt054
    • (2013) Bioinformatics , vol.29 , pp. 792-793
    • Novak, P.1    Neumann, P.2    Pech, J.3    Steinhaisl, J.4    Macas, J.5
  • 43
    • 0035703160 scopus 로고    scopus 로고
    • Phenology and genome size variation in Allium L.: A tight correlation?
    • Ohri, D., and K. Pistrick. 2001. Phenology and genome size variation in Allium L.: A tight correlation?. Plant Biol. (Stuttg.) 3:654-660. doi:10.1055/s-2001-19362
    • (2001) Plant Biol. (Stuttg.) , vol.3 , pp. 654-660
    • Ohri, D.1    Pistrick, K.2
  • 44
    • 84901596292 scopus 로고    scopus 로고
    • The case for junk DNA
    • Palazzo, A.F., and T.R. Gregory. 2014. The case for junk DNA. PLoS Genet. 10:e1004351. doi:10.1371/journal.pgen.1004351
    • (2014) Plos Genet , vol.10
    • Palazzo, A.F.1    Gregory, T.R.2
  • 45
    • 34249848751 scopus 로고    scopus 로고
    • CEGMA: A pipeline to accurately annotate core genes in eukaryotic genomes
    • Parra, G., K. Bradnam, and I. Korf. 2007. CEGMA: A pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23:1061-1067. doi:10.1093/bioinformatics/btm071
    • (2007) Bioinformatics , vol.23 , pp. 1061-1067
    • Parra, G.1    Bradnam, K.2    Korf, I.3
  • 47
    • 0035058360 scopus 로고    scopus 로고
    • Evolution of genome size: New approaches to an old problem
    • Petrov, D.A. 2001. Evolution of genome size: New approaches to an old problem. Trends Genet. 17:23-28. doi:10.1016/S0168-9525(00)02157-0
    • (2001) Trends Genet , vol.17 , pp. 23-28
    • Petrov, D.A.1
  • 48
    • 0029856377 scopus 로고    scopus 로고
    • High intrinsic rate of DNA loss in Drosophila
    • Petrov, D.A., E.R. Lozovskaya, and D.L. Hartl. 1996. High intrinsic rate of DNA loss in Drosophila. Nature 384:346-349. doi:10.1038/384346a0
    • (1996) Nature , vol.384 , pp. 346-349
    • Petrov, D.A.1    Lozovskaya, E.R.2    Hartl, D.L.3
  • 49
    • 33749392949 scopus 로고    scopus 로고
    • Doubling genome size without polyploidization: Dynamics of retrotransposition driven genomic expansions in Oryza australiensis, a wild relative of rice
    • Piegu, B., R. Guyot, N. Picault, A. Roulin, A. Sanyal, H. Kim, K. Collura, D.S. Brar, S. Jackson, R.A. Wing, and O. Panaud. 2006. Doubling genome size without polyploidization: Dynamics of retrotransposition driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res. 16:1262-1269. doi:10.1101/gr.5290206
    • (2006) Genome Res , vol.16 , pp. 1262-1269
    • Piegu, B.1    Guyot, R.2    Picault, N.3    Roulin, A.4    Sanyal, A.5    Kim, H.6    Collura, K.7    Brar, D.S.8    Jackson, S.9    Wing, R.A.10    Panaud, O.11
  • 50
    • 11444267813 scopus 로고    scopus 로고
    • The repair of double-strand breaks in plants: Mechanisms and consequences for genome evolution
    • Puchta, H. 2005. The repair of double-strand breaks in plants: Mechanisms and consequences for genome evolution. J. Exp. Bot. 56:1-14. doi:10.1093/jxb/eri123
    • (2005) J. Exp. Bot , vol.56 , pp. 1-14
    • Puchta, H.1
  • 51
    • 0032422925 scopus 로고    scopus 로고
    • Pathways, mechanisms, and rates of polyploid formation in flowering plants
    • Ramsey, J., and D.W. Schemske. 1998. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst. 29:467-501. doi:10.1146/annurev.ecolsys.29.1.467
    • (1998) Annu. Rev. Ecol. Syst , vol.29 , pp. 467-501
    • Ramsey, J.1    Schemske, D.W.2
  • 54
    • 79952200839 scopus 로고    scopus 로고
    • An Andean radiation: Polyploidy in the tree genus Polylepis (Rosaceae, Sanguisorbeae)
    • Schmidt-Lebuhn, A.N., J. Fuchs, D. Hertel, H. Hirsch, J. Toivonen, and M. Kessler. 2010. An Andean radiation: Polyploidy in the tree genus Polylepis (Rosaceae, Sanguisorbeae). Plant Biol. (Stuttg.) 12:917-926. doi:10.1111/j.1438-8677.2009.00297.x
    • (2010) Plant Biol. (Stuttg.) , vol.12 , pp. 917-926
    • Schmidt-Lebuhn, A.N.1    Fuchs, J.2    Hertel, D.3    Hirsch, H.4    Toivonen, J.5    Kessler, M.6
  • 55
    • 79956330054 scopus 로고    scopus 로고
    • Interpretation of karyotype evolution should consider chromosome structural constraints
    • Schubert, I., and M.A. Lysak. 2011. Interpretation of karyotype evolution should consider chromosome structural constraints. Trends Genet. 27:207-216. doi:10.1016/j.tig.2011.03.004
    • (2011) Trends Genet , vol.27 , pp. 207-216
    • Schubert, I.1    Lysak, M.A.2
  • 56
    • 0028167890 scopus 로고
    • Sequence organization and the mechanism of interstitial deletion clustering in a plant genome (Vicia faba)
    • Schubert, I., R. Rieger, J. Fuchs, and U. Pich. 1994. Sequence organization and the mechanism of interstitial deletion clustering in a plant genome (Vicia faba). Mutat. Res. 325:1-5. doi:10.1016/0165-7992(94)90020-5
    • (1994) Mutat. Res , vol.325 , pp. 1-5
    • Schubert, I.1    Rieger, R.2    Fuchs, J.3    Pich, U.4
  • 58
    • 0033198094 scopus 로고    scopus 로고
    • Polyploidy: Recurrent formation and genome evolution. Trends Ecol
    • Soltis, D.E., and P.S. Soltis. 1999. Polyploidy: Recurrent formation and genome evolution. Trends Ecol. Evol. 14:348-352. doi:10.1016/S01695347(99)01638-9
    • (1999) Evol , vol.14 , pp. 348-352
    • Soltis, D.E.1    Soltis, P.S.2
  • 59
    • 23144444421 scopus 로고    scopus 로고
    • AUGUSTUS: A web server for gene prediction in eukaryotes that allows user-defined constraints
    • Stanke, M., and B. Morgenstern. 2005. AUGUSTUS: A web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 33:W465-W467. doi:10.1093/nar/gki458
    • (2005) Nucleic Acids Res , vol.33 , pp. W465-W467
    • Stanke, M.1    Morgenstern, B.2
  • 60
    • 77955273950 scopus 로고    scopus 로고
    • A triptych of the evolution of plant transposable elements
    • Tenaillon, M.I., J.D. Hollister, and B.S. Gaut. 2010. A triptych of the evolution of plant transposable elements. Trends Plant Sci. 15:471-478. doi:10.1016/j.tplants.2010.05.003
    • (2010) Trends Plant Sci , vol.15 , pp. 471-478
    • Tenaillon, M.I.1    Hollister, J.D.2    Gaut, B.S.3
  • 61
    • 0034649566 scopus 로고    scopus 로고
    • Analysis of the genome sequence of the flowering plant Arabidopsis thaliana
    • The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796-815. doi:10.1038/35048692
    • (2000) Nature , vol.408 , pp. 796-815
  • 62
    • 0000822856 scopus 로고
    • The genetic organization of chromosomes
    • Thomas, C.A. 1971. The genetic organization of chromosomes. Annu. Rev. Genet. 5:237-256. doi:10.1146/annurev.ge.05.120171.001321
    • (1971) Annu. Rev. Genet , vol.5 , pp. 237-256
    • Thomas, C.A.1
  • 64
    • 77952123055 scopus 로고    scopus 로고
    • Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
    • Trapnell, C., B.A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M.J. van Baren, S.L. Salzberg, B.J. Wold, and L. Pachter. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28:511-515. doi:10.1038/nbt.1621
    • (2010) Nat. Biotechnol , vol.28 , pp. 511-515
    • Trapnell, C.1    Williams, B.A.2    Pertea, G.3    Mortazavi, A.4    Kwan, G.5    Van Baren, M.J.6    Salzberg, S.L.7    Wold, B.J.8    Pachter, L.9
  • 65
    • 84901610136 scopus 로고    scopus 로고
    • Genome size and genomic GC content evolution in the miniature genome-sized family Lentibulariaceae
    • Veleba, A., P. Bures, L. Adamec, P. Smarda, I. Lipnerova, and L. Horova. 2014. Genome size and genomic GC content evolution in the miniature genome-sized family Lentibulariaceae. New Phytol. 203:22-28. doi:10.1111/nph.12790
    • (2014) New Phytol , vol.203 , pp. 22-28
    • Veleba, A.1    Bures, P.2    Adamec, L.3    Smarda, P.4    Lipnerova, I.5    Horova, L.6
  • 66
    • 0032876994 scopus 로고    scopus 로고
    • Intron-genome size relationship on a large evolutionary scale
    • Vinogradov, A.E. 1999. Intron-genome size relationship on a large evolutionary scale. J. Mol. Evol. 49:376-384. doi:10.1007/PL00006561
    • (1999) J. Mol. Evol , vol.49 , pp. 376-384
    • Vinogradov, A.E.1
  • 67
    • 84903579362 scopus 로고    scopus 로고
    • Repair of site-specific DNA double-strand breaks in barley occurs via diverse pathways primarily involving the sister chromatid
    • Vu, G.T., H.X. Cao, K. Watanabe, G. Hensel, F.R. Blattner, J. Kumlehn, and I. Schubert. 2014. Repair of site-specific DNA double-strand breaks in barley occurs via diverse pathways primarily involving the sister chromatid. Plant Cell 26:2156-2167. doi:10.1105/tpc.114.126607
    • (2014) Plant Cell , vol.26 , pp. 2156-2167
    • Vu, G.T.1    Cao, H.X.2    Watanabe, K.3    Hensel, G.4    Blattner, F.R.5    Kumlehn, J.6    Schubert, I.7
  • 71
    • 80054991172 scopus 로고    scopus 로고
    • Targeted identification of short interspersed nuclear element families shows their widespread existence and extreme heterogeneity in plant genomes
    • Wenke, T., T. Dobel, T.R. Sorensen, H. Junghans, B. Weisshaar, and T. Schmidt. 2011. Targeted identification of short interspersed nuclear element families shows their widespread existence and extreme heterogeneity in plant genomes. Plant Cell 23:3117-3128. doi:10.1105/ tpc.111.088682
    • (2011) Plant Cell , vol.23 , pp. 3117-3128
    • Wenke, T.1    Dobel, T.2    Sorensen, T.R.3    Junghans, H.4    Weisshaar, B.5    Schmidt, T.6
  • 72
    • 34248669040 scopus 로고    scopus 로고
    • KaKs_ Calculator: Calculating Ka and Ks through model selection and model averaging. Genomics
    • Zhang, Z., J. Li, X.Q. Zhao, J. Wang, G.K. Wong, and J. Yu. 2006. KaKs_ Calculator: Calculating Ka and Ks through model selection and model averaging. Genomics, Proteomics Bioinf. 4:259-263. doi:10.1016/S1672- 0229(07)60007-2
    • (2006) Proteomics Bioinf , vol.4 , pp. 259-263
    • Zhang, Z.1    Li, J.2    Zhao, X.Q.3    Wang, J.4    Wong, G.K.5    Yu, J.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.