-
1
-
-
73649140264
-
Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome
-
Baucom, R.S., J.C. Estill, C. Chaparro, N. Upshaw, A. Jogi, J.M. Deragon, R.P. Westerman, P.J. Sanmiguel, and J.L. Bennetzen. 2009a. Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genet. 5:e1000732. doi:10.1371/ journal.pgen.1000732
-
(2009)
Plos Genet
, vol.5
-
-
Baucom, R.S.1
Estill, J.C.2
Chaparro, C.3
Upshaw, N.4
Jogi, A.5
Deragon, J.M.6
Westerman, R.P.7
Sanmiguel, P.J.8
Bennetzen, J.L.9
-
2
-
-
59949097135
-
Natu- ral selection on gene function drives the evolution of LTR retrotransposon families in the rice genome
-
Baucom, R.S., J.C. Estill, J. Leebens-Mack, and J.L. Bennetzen. 2009b. Natu- ral selection on gene function drives the evolution of LTR retrotransposon families in the rice genome. Genome Res. 19:243-254. doi:10.1101/ gr.083360.108
-
(2009)
Genome Res
, vol.19
, pp. 243-254
-
-
Baucom, R.S.1
Estill, J.C.2
Leebens-Mack, J.3
Bennetzen, J.L.4
-
3
-
-
0037381673
-
Comparisons with Caenorhabditis (Approximately 100 Mb) and Drosophila (approximately 175 Mb) using flow cytometry show genome size in Arabidopsis to be approximately 157 Mb and thus approximately 25% larger than the Arabidopsis genome initiative estimate of approximately 125 Mb
-
Bennett, M.D., I.J. Leitch, H.J. Price, and J.S. Johnston. 2003. Comparisons with Caenorhabditis (approximately 100 Mb) and Drosophila (approximately 175 Mb) using flow cytometry show genome size in Arabidopsis to be approximately 157 Mb and thus approximately 25% larger than the Arabidopsis genome initiative estimate of approximately 125 Mb. Ann. Bot. (Lond.) 91:547-557. doi:10.1093/aob/mcg057
-
(2003)
Ann. Bot. (Lond.)
, vol.91
, pp. 547-557
-
-
Bennett, M.D.1
Leitch, I.J.2
Price, H.J.3
Johnston, J.S.4
-
4
-
-
84899743736
-
The contributions of transposable elements to the structure, function, and evolution of plant genomes
-
Bennetzen, J.L., and H. Wang. 2014. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu. Rev. Plant Biol. 65:505-530. doi:10.1146/annurevarplant-050213-035811
-
(2014)
Annu. Rev. Plant Biol
, vol.65
, pp. 505-530
-
-
Bennetzen, J.L.1
Wang, H.2
-
5
-
-
79951530130
-
Scaffolding pre-assembled contigs using SSPACE
-
Boetzer, M., C.V. Henkel, H.J. Jansen, D. Butler, and W. Pirovano. 2011. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27:578-579. doi:10.1093/bioinformatics/btq683
-
(2011)
Bioinformatics
, vol.27
, pp. 578-579
-
-
Boetzer, M.1
Henkel, C.V.2
Jansen, H.J.3
Butler, D.4
Pirovano, W.5
-
6
-
-
43949138227
-
Blast2GO: A comprehensive suite for functional analysis in plant genomics
-
Conesa, A., and S. Gotz. 2008. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics 2008:619832. doi:10.1155/2008/619832
-
(2008)
Int. J. Plant Genomics
, vol.2008
, pp. 619832
-
-
Conesa, A.1
Gotz, S.2
-
7
-
-
79960405019
-
The variant call format and VCFtools
-
Danecek, P., A. Auton, G. Abecasis, C.A. Albers, E. Banks, M.A. DePristo, R.E. Handsaker, G. Lunter, G.T. Marth, S.T. Sherry, G. McVean, and R. Durbin. 2011. The variant call format and VCFtools. Bioinformatics 27:2156-2158. doi:10.1093/bioinformatics/btr330
-
(2011)
Bioinformatics
, vol.27
, pp. 2156-2158
-
-
Danecek, P.1
Auton, A.2
Abecasis, G.3
Albers, C.A.4
Banks, E.5
Depristo, M.A.6
Handsaker, R.E.7
Lunter, G.8
Marth, G.T.9
Sherry, S.T.10
McVean, G.11
Durbin, R.12
-
8
-
-
84876406754
-
Sexual polyploidization in plants-cytological mechanisms and molecular regulation
-
De Storme, N., and D. Geelen. 2013. Sexual polyploidization in plants-cytological mechanisms and molecular regulation. New Phytol. 198:670-684. doi:10.1111/nph.12184
-
(2013)
New Phytol
, vol.198
, pp. 670-684
-
-
De Storme, N.1
Geelen, D.2
-
9
-
-
0036061848
-
Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis
-
Devos, K.M., J.K.M. Brown, and J.L. Bennetzen. 2002. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res. 12:1075-1079. doi:10.1101/gr.132102
-
(2002)
Genome Res
, vol.12
, pp. 1075-1079
-
-
Devos, K.M.1
Brown, J.2
Bennetzen, J.L.3
-
10
-
-
38449104378
-
Estimation of nuclear DNA content in plants using flow cytometry
-
Dolezel, J., J. Greilhuber, and J. Suda. 2007. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2:2233-2244. doi:10.1038/nprot.2007.310
-
(2007)
Nat. Protoc
, vol.2
, pp. 2233-2244
-
-
Dolezel, J.1
Greilhuber, J.2
Suda, J.3
-
11
-
-
3042666256
-
MUSCLE: Multiple sequence alignment with high accuracy and high throughput
-
Edgar, R.C. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792-1797. doi:10.1093/nar/gkh340
-
(2004)
Nucleic Acids Res
, vol.32
, pp. 1792-1797
-
-
Edgar, R.C.1
-
12
-
-
84868534630
-
Presidential address. Transposable elements, epigenetics, and genome evolution
-
Fedoroff, N.V. 2012. Presidential address. Transposable elements, epigenetics, and genome evolution. Science 338:758-767. doi:10.1126/science.338.6108.758
-
(2012)
Science
, vol.338
, pp. 758-767
-
-
Fedoroff, N.V.1
-
14
-
-
84922971383
-
Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms
-
Fleischmann, A., T.P. Michael, F. Rivadavia, A. Sousa, W. Wang, E.M. Temsch, J. Greilhuber, K.F. Muller, and G. Heubl. 2014. Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms. Ann. Bot. (Lond.) 114:1651-1663. doi:10.1093/aob/mcu189
-
(2014)
Ann. Bot. (Lond.)
, vol.114
, pp. 1651-1663
-
-
Fleischmann, A.1
Michael, T.P.2
Rivadavia, F.3
Sousa, A.4
Wang, W.5
Temsch, E.M.6
Greilhuber, J.7
Muller, K.F.8
Heubl, G.9
-
15
-
-
77953325598
-
Phylogenetics and character evolution in the carnivorous plant genus Genlisea A. St.-Hil. (Lentibulariaceae)
-
Fleischmann, A., B. Schaferhoff, G. Heubl, F. Rivadavia, W. Barthlott, and K.F. Muller. 2010. Phylogenetics and character evolution in the carnivorous plant genus Genlisea A. St.-Hil. (Lentibulariaceae). Mol. Phylogenet. Evol. 56:768-783. doi:10.1016/j.ympev.2010.03.009
-
(2010)
Mol. Phylogenet. Evol
, vol.56
, pp. 768-783
-
-
Fleischmann, A.1
Schaferhoff, B.2
Heubl, G.3
Rivadavia, F.4
Barthlott, W.5
Muller, K.F.6
-
16
-
-
0020611575
-
Rapid flow cytometric analysis of the cell cycle in intact plant tissues
-
Galbraith, D.W., K.R. Harkins, J.M. Maddox, N.M. Ayres, D.P. Sharma, and E. Firoozabady. 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049-1051. doi:10.1126/science.220.4601.1049
-
(1983)
Science
, vol.220
, pp. 1049-1051
-
-
Galbraith, D.W.1
Harkins, K.R.2
Maddox, J.M.3
Ayres, N.M.4
Sharma, D.P.5
Firoozabady, E.6
-
17
-
-
0035090476
-
Coincidence, coevolution, or causation? DNA content, cellsize, and the C-value enigma
-
Gregory, T.R. 2001. Coincidence, coevolution, or causation? DNA content, cellsize, and the C-value enigma. Biol. Rev. Camb. Philos. Soc. 76:65-101. doi:10.1017/S1464793100005595
-
(2001)
Biol. Rev. Camb. Philos. Soc
, vol.76
, pp. 65-101
-
-
Gregory, T.R.1
-
18
-
-
33745888167
-
Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size. Plant Biol
-
Greilhuber, J., T. Borsch, K. Müller, A. Worberg, S. Porembski, and W. Barthlott. 2006. Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size. Plant Biol. (Stuttg.) 8:770-777. doi:10.1055/s-2006-924101
-
(2006)
(Stuttg.)
, vol.8
, pp. 770-777
-
-
Greilhuber, J.1
Borsch, T.2
Müller, K.3
Worberg, A.4
Porembski, S.5
Barthlott, W.6
-
19
-
-
84860135249
-
The evolution of genome size variation in drumstick onions (Allium subgenus Melanocrommyum)
-
Gurushidze, M., J. Fuchs, and F.R. Blattner. 2012. The evolution of genome size variation in drumstick onions (Allium subgenus Melanocrommyum). Syst. Bot. 37:96-104. doi:10.1600/036364412X616675
-
(2012)
Syst. Bot
, vol.37
, pp. 96-104
-
-
Gurushidze, M.1
Fuchs, J.2
Blattner, F.R.3
-
20
-
-
33749389724
-
Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium
-
Hawkins, J.S., H. Kim, J.D. Nason, R.A. Wing, and J.F. Wendel. 2006. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res. 16:1252-1261. doi:10.1101/gr.5282906
-
(2006)
Genome Res
, vol.16
, pp. 1252-1261
-
-
Hawkins, J.S.1
Kim, H.2
Nason, J.D.3
Wing, R.A.4
Wendel, J.F.5
-
21
-
-
43449099736
-
Genomic clues to the evolutionary success of polyploid plants
-
Hegarty, M.J., and J.S. Hiscock. 2008. Genomic clues to the evolutionary success of polyploid plants. Curr. Biol. 18:R435-R444. doi:10.1016/j.cub.2008.03.043
-
(2008)
Curr. Biol
, vol.18
, pp. R435-R444
-
-
Hegarty, M.J.1
Hiscock, J.S.2
-
22
-
-
0036927583
-
Physical map-based sizes of the centromeric regions of Arabidopsis thaliana chromosomes 1, 2, and 3
-
Hosouchi, T., N. Kumekawa, H. Tsuruoka, and H. Kotani. 2002. Physical map-based sizes of the centromeric regions of Arabidopsis thaliana chromosomes 1, 2, and 3. DNA Res. 9:117-121. doi:10.1093/dnares/9.4.117
-
(2002)
DNA Res
, vol.9
, pp. 117-121
-
-
Hosouchi, T.1
Kumekawa, N.2
Tsuruoka, H.3
Kotani, H.4
-
23
-
-
0037356770
-
Methylation of histone H3 in euchromatin of plant chromosomes depends on basic nuclear DNA content
-
Houben, A., D. Demidov, D. Gernand, A. Meister, C.R. Leach, and I. Schubert. 2003. Methylation of histone H3 in euchromatin of plant chromosomes depends on basic nuclear DNA content. Plant J. 33:967-973. doi:10.1046/j.1365-313X.2003.01681.x
-
(2003)
Plant J
, vol.33
, pp. 973
-
-
Houben, A.1
Demidov, D.2
Gernand, D.3
Meister, A.4
Leach, C.R.5
Schubert, I.6
-
24
-
-
79955468851
-
The Arabidopsis lyrata genome sequence and the basis of rapid genome size change
-
Hu, T.T., P. Pattyn, E.G. Bakker, J. Cao, J.F. Cheng, R.M. Clark, N. Fahlgren, J.A. Fawcett, J. Grimwood, H. Gundlach, G. Haberer, J.D. Hollister, S. Ossowski, R.P. Ottilar, A.A. Salamov, K. Schneeberger, M. Spannagl, X. Wang, L. Yang, M.E. Nasrallah, J. Bergelson, J.C. Carrington, B.S. Gaut, J. Schmutz, K.F. Mayer, Y. Van de Peer, I.V. Grigoriev, M. Nordborg, D. Weigel, and Y.L. Guo. 2011. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat. Genet. 43:476-481. doi:10.1038/ng.807
-
(2011)
Nat. Genet
, vol.43
, pp. 476-481
-
-
Hu, T.T.1
Pattyn, P.2
Bakker, E.G.3
Cao, J.4
Cheng, J.F.5
Clark, R.M.6
Fahlgren, N.7
Fawcett, J.A.8
Grimwood, J.9
Gundlach, H.10
Haberer, G.11
Hollister, J.D.12
Ossowski, S.13
Ottilar, R.P.14
Salamov, A.A.15
Schneeberger, K.16
Spannagl, M.17
Wang, X.18
Yang, L.19
Nasrallah, M.E.20
Bergelson, J.21
Carrington, J.C.22
Gaut, B.S.23
Schmutz, J.24
Mayer, K.F.25
Van De Peer, Y.26
Grigoriev, I.V.27
Nordborg, M.28
Weigel, D.29
Guo, Y.L.30
more..
-
25
-
-
0029100668
-
Small genomes for better flyers
-
Hughes, A.L., and M.K. Hughes. 1995. Small genomes for better flyers. Nature 377:391. doi:10.1038/377391a0
-
(1995)
Nature
, vol.377
, pp. 391
-
-
Hughes, A.L.1
Hughes, M.K.2
-
26
-
-
84878713991
-
Architecture and evolution of a minute plant genome
-
Ibarra-Laclette, E., E. Lyons, G. Hernandez-Guzman, C.A. Perez-Torres, L. Carretero-Paulet, T.H. Chang, T. Lan, A.J. Welch, M.J. Juarez, J. Simpson, A. Fernandez-Cortes, M. Arteaga-Vazquez, E. Gongora-Castillo, G. Acevedo-Hernandez, S.C. Schuster, H. Himmelbauer, A.E. Minoche, S. Xu, M. Lynch, A. Oropeza-Aburto, S.A. Cervantes-Perez, M. de Jesus Ortega-Estrada, J.I. Cervantes-Luevano, T.P. Michael, T. Mockler, D. Bryant, A. Herrera-Estrella, V.A. Albert, and L. Herrera-Estrella. 2013. Architecture and evolution of a minute plant genome. Nature 498:94-98. doi:10.1038/nature12132
-
(2013)
Nature
, vol.498
, pp. 94-98
-
-
Ibarra-Laclette, E.1
Lyons, E.2
Hernandez-Guzman, G.3
Perez-Torres, C.A.4
Carretero-Paulet, L.5
Chang, T.H.6
Lan, T.7
Welch, A.J.8
Juarez, M.J.9
Simpson, J.10
Fernandez-Cortes, A.11
Arteaga-Vazquez, M.12
Gongora-Castillo, E.13
Acevedo-Hernandez, G.14
Schuster, S.C.15
Himmelbauer, H.16
Minoche, A.E.17
Xu, S.18
Lynch, M.19
Oropeza-Aburto, A.20
Cervantes-Perez, S.A.21
De Jesus Ortega-Estrada, M.22
Cervantes-Luevano, J.I.23
Michael, T.P.24
Mockler, T.25
Bryant, D.26
Herrera-Estrella, A.27
Albert, V.A.28
Herrera-Estrella, L.29
more..
-
27
-
-
84862234514
-
Ensembl genomes: An integrative resource for genome-scale data from non-ver-tebrate species
-
Kersey, P.J., D.M. Staines, D. Lawson, E. Kulesha, P. Derwent, J.C. Hum- phrey, D.S. Hughes, S. Keenan, A. Kerhornou, G. Koscielny, N. Langridge, M.D. McDowall, K. Megy, U. Maheswari, M. Nuhn, M. Paulini, H. Pedro, I. Toneva, D. Wilson, A. Yates, and E. Birney. 2012. Ensembl genomes: An integrative resource for genome-scale data from non-ver-tebrate species. Nucleic Acids Res. 40:D91-D97. doi:10.1093/nar/gkr895
-
(2012)
Nucleic Acids Res
, vol.40
, pp. D91-D97
-
-
Kersey, P.J.1
Staines, D.M.2
Lawson, D.3
Kulesha, E.4
Derwent, P.5
Hum- Phrey, J.C.6
Hughes, D.S.7
Keenan, S.8
Kerhornou, A.9
Koscielny, G.10
Langridge, N.11
McDowall, M.D.12
Megy, K.13
Maheswari, U.14
Nuhn, M.15
Paulini, M.16
Pedro, H.17
Toneva, I.18
Wilson, D.19
Yates, A.20
Birney, E.21
more..
-
28
-
-
0034675997
-
Species-specific double-strand break repair and genome evolution in plants
-
Kirik, A., S. Salomon, and H. Puchta. 2000. Species-specific double-strand break repair and genome evolution in plants. EMBO J. 19:5562-5566. doi:10.1093/emboj/19.20.5562
-
(2000)
EMBO J
, vol.19
, pp. 5562-5566
-
-
Kirik, A.1
Salomon, S.2
Puchta, H.3
-
29
-
-
56549086632
-
A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes
-
Kurtz, S., A. Narechania, J.C. Stein, and D. Ware. 2008. A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes. BMC Genomics 9:517. doi:10.1186/1471-2164-9-517
-
(2008)
BMC Genomics
, vol.9
, pp. 517
-
-
Kurtz, S.1
Narechania, A.2
Stein, J.C.3
Ware, D.4
-
30
-
-
84859210032
-
Fast gapped-read alignment with Bowtie 2. Nat
-
Langmead, B., and S.L. Salzberg. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9:357-359. doi:10.1038/nmeth.1923
-
(2012)
Methods
, vol.9
, pp. 357-359
-
-
Langmead, B.1
Salzberg, S.L.2
-
31
-
-
48849097481
-
The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae)
-
Leitch, I.J., L. Hanson, K.Y. Lim, A. Kovarik, M.W. Chase, J.J. Clarkson, and A.R. Leitch. 2008. The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Ann. Bot. (Lond.) 101:805-814. doi:10.1093/aob/mcm326
-
(2008)
Ann. Bot. (Lond.)
, vol.101
, pp. 805-814
-
-
Leitch, I.J.1
Hanson, L.2
Lim, K.Y.3
Kovarik, A.4
Chase, M.W.5
Clarkson, J.J.6
Leitch, A.R.7
-
32
-
-
84880094159
-
The miniature genome of a carnivorous plant Genlisea aurea contains a low number of genes and short noncoding sequences
-
Leushkin, E.V., R.A. Sutormin, E.R. Nabieva, A.A. Penin, A.S. Kondrashov, and M.D. Logacheva. 2013. The miniature genome of a carnivorous plant Genlisea aurea contains a low number of genes and short noncoding sequences. BMC Genomics 14:476. doi:10.1186/1471-2164-14-476
-
(2013)
BMC Genomics
, vol.14
, pp. 476
-
-
Leushkin, E.V.1
Sutormin, R.A.2
Nabieva, E.R.3
Penin, A.A.4
Kondrashov, A.S.5
Logacheva, M.D.6
-
33
-
-
84890750649
-
Insights into the common ancestor of eudicots
-
A.H. Paterson, editor, Academic Press, London
-
Li, J., H. Tang, J.E. Bowers, R. Ming, and A.H. Paterson. 2014. Insights into the common ancestor of eudicots. In: A.H. Paterson, editor, Advances in botanical research: Genomes of herbaceous land plants. Vol. 69. Academic Press, London. p. 137-174.
-
(2014)
Advances in Botanical Research: Genomes of Herbaceous Land Plants
, vol.69
, pp. 137-174
-
-
Li, J.1
Tang, H.2
Bowers, J.E.3
Ming, R.4
Paterson, A.H.5
-
34
-
-
0141519279
-
OrthoMCL: Identification of ortholog groups for eukaryotic genomes
-
Li, L., C.J. Stoeckert, and D. S. Roos. 2003. OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Res. 13:2178-2189. doi:10.1101/gr.1224503
-
(2003)
Genome Res
, vol.13
, pp. 2178-2189
-
-
Li, L.1
Stoeckert, C.J.2
Roos, D.S.3
-
35
-
-
84873505245
-
Switchgrass genomic diversity, ploidy, and evolution: Novel insights from a network-based SNP discovery protocol
-
Lu, F., A.E. Lipka, J. Glaubitz, R. Elshire, J.H. Cherney, M.D. Casler, E.S. Buckler, and D.E. Costich. 2013. Switchgrass genomic diversity, ploidy, and evolution: Novel insights from a network-based SNP discovery protocol. PLoS Genet. 9:e1003215. doi:10.1371/journal.pgen.1003215
-
(2013)
Plos Genet
, vol.9
-
-
Lu, F.1
Lipka, A.E.2
Glaubitz, J.3
Elshire, R.4
Cherney, J.H.5
Casler, M.D.6
Buckler, E.S.7
Costich, D.E.8
-
36
-
-
33645508488
-
Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species
-
Lysak, M.A., A. Berr, A. Pecinka, R. Schmidt, K. McBreen, and I. Schubert. 2006a. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc. Natl. Acad. Sci. USA 103:5224-5229. doi:10.1073/pnas.0510791103
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 5224-5229
-
-
Lysak, M.A.1
Berr, A.2
Pecinka, A.3
Schmidt, R.4
McBreen, K.5
Schubert, I.6
-
38
-
-
77956810194
-
Fast diploidization in close mesopolyploid relatives of Arabidopsis
-
Mandakova, T., S. Joly, M. Krzywinski, K. Mummenhoff, and M.A. Lysak. 2010. Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell 22:2277-2290. doi:10.1105/tpc.110.074526
-
(2010)
Plant Cell
, vol.22
, pp. 2277-2290
-
-
Mandakova, T.1
Joly, S.2
Krzywinski, M.3
Mummenhoff, K.4
Lysak, M.A.5
-
39
-
-
84863642420
-
Recombination drives vertebrate genome contraction
-
Nam, K., and H. Ellegren. 2012. Recombination drives vertebrate genome contraction. PLoS Genet. 8:e1002680. doi:10.1371/journal.pgen.1002680
-
(2012)
Plos Genet
, vol.8
-
-
Nam, K.1
Ellegren, H.2
-
40
-
-
0037767281
-
Genome size evolution in puffer-fish: A comparative analysis of diodontid and tetraodontid pufferfish genomes
-
Neafsey, D.E., and S.R. Palumbi. 2003. Genome size evolution in puffer-fish: A comparative analysis of diodontid and tetraodontid pufferfish genomes. Genome Res. 13:821-830. doi:10.1101/gr.841703
-
(2003)
Genome Res
, vol.13
, pp. 821-830
-
-
Neafsey, D.E.1
Palumbi, S.R.2
-
41
-
-
77954854627
-
Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data
-
Novak, P., P. Neumann, and J. Macas. 2010. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 11:378. doi:10.1186/1471-2105-11-378
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 378
-
-
Novak, P.1
Neumann, P.2
Macas, J.3
-
42
-
-
84875165671
-
Repeat Explorer: A Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads
-
Novak, P., P. Neumann, J. Pech, J. Steinhaisl, and J. Macas. 2013. Repeat Explorer: A Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29:792-793. doi:10.1093/bioinformatics/btt054
-
(2013)
Bioinformatics
, vol.29
, pp. 792-793
-
-
Novak, P.1
Neumann, P.2
Pech, J.3
Steinhaisl, J.4
Macas, J.5
-
43
-
-
0035703160
-
Phenology and genome size variation in Allium L.: A tight correlation?
-
Ohri, D., and K. Pistrick. 2001. Phenology and genome size variation in Allium L.: A tight correlation?. Plant Biol. (Stuttg.) 3:654-660. doi:10.1055/s-2001-19362
-
(2001)
Plant Biol. (Stuttg.)
, vol.3
, pp. 654-660
-
-
Ohri, D.1
Pistrick, K.2
-
44
-
-
84901596292
-
The case for junk DNA
-
Palazzo, A.F., and T.R. Gregory. 2014. The case for junk DNA. PLoS Genet. 10:e1004351. doi:10.1371/journal.pgen.1004351
-
(2014)
Plos Genet
, vol.10
-
-
Palazzo, A.F.1
Gregory, T.R.2
-
45
-
-
34249848751
-
CEGMA: A pipeline to accurately annotate core genes in eukaryotic genomes
-
Parra, G., K. Bradnam, and I. Korf. 2007. CEGMA: A pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23:1061-1067. doi:10.1093/bioinformatics/btm071
-
(2007)
Bioinformatics
, vol.23
, pp. 1061-1067
-
-
Parra, G.1
Bradnam, K.2
Korf, I.3
-
46
-
-
84871428041
-
Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres
-
Paterson, A.H., J.F. Wendel, H. Gundlach, H. Guo, J. Jenkins, D. Jin, D. Llewellyn, K.C. Showmaker, S. Shu, J. Udall, M.J. Yoo, R. Byers, W. Chen, A. Doron-Faigenboim, M.V. Duke, L. Gong, J. Grimwood, C. Grover, K. Grupp, G. Hu, T.H. Lee, J. Li, L. Lin, T. Liu, B.S. Marler, J.T. Page, A.W. Roberts, E. Romanel, W.S. Sanders, E. Szadkowski, X. Tan, H. Tang, C. Xu, J. Wang, Z. Wang, D. Zhang, L. Zhang, H. Ashrafi, F. Bedon, J.E. Bowers, C.L. Brubaker, P.W. Chee, S. Das, A.R. Gingle, C.H. Haigler, D. Harker, L.V. Hoffmann, R. Hovav, D.C. Jones, C. Lemke, S. Mansoor, M. ur Rahman, L.N. Rainville, A. Rambani, U.K. Reddy, J.K. Rong, Y. Saranga, B.E. Scheffler, J.A. Scheffler, D.M. Stelly, B.A. Triplett, A. Van Deynze, M. F Vaslin, V. N Waghmare, S. A Walford, R. J Wright, E. A Zaki, T Zhang, E. S Dennis, K. F Mayer, D. G Peterson, D. S Rokhsar, X Wang, and J Schmutz. 2012. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423-427. doi:10.1038/nature11798
-
(2012)
Nature
, vol.492
, pp. 423-427
-
-
Paterson, A.H.1
Wendel, J.F.2
Gundlach, H.3
Guo, H.4
Jenkins, J.5
Jin, D.6
Llewellyn, D.7
Showmaker, K.C.8
Shu, S.9
Udall, J.10
Yoo, M.J.11
Byers, R.12
Chen, W.13
Doron-Faigenboim, A.14
Duke, M.V.15
Gong, L.16
Grimwood, J.17
Grover, C.18
Grupp, K.19
Hu, G.20
Lee, T.H.21
Li, J.22
Lin, L.23
Liu, T.24
Marler, B.S.25
Page, J.T.26
Roberts, A.W.27
Romanel, E.28
Sanders, W.S.29
Szadkowski, E.30
Tan, X.31
Tang, H.32
Xu, C.33
Wang, J.34
Wang, Z.35
Zhang, D.36
Zhang, L.37
Ashrafi, H.38
Bedon, F.39
Bowers, J.E.40
Brubaker, C.L.41
Chee, P.W.42
Das, S.43
Gingle, A.R.44
Haigler, C.H.45
Harker, D.46
Hoffmann, L.V.47
Hovav, R.48
Jones, D.C.49
Lemke, C.50
Mansoor, S.51
Ur Rahman, M.52
Rainville, L.N.53
Rambani, A.54
Reddy, U.K.55
Rong, J.K.56
Saranga, Y.57
Scheffler, B.E.58
Scheffler, J.A.59
Stelly, D.M.60
Triplett, B.A.61
Van Deynze, A.62
Vaslin, M.F.63
Waghmare, V.N.64
Walford, S.A.65
Wright, R.J.66
Zaki, E.A.67
Zhang, T.68
Dennis, E.S.69
Mayer, K.F.70
Peterson, D.G.71
Rokhsar, D.S.72
Wang, X.73
Schmutz, J.74
more..
-
47
-
-
0035058360
-
Evolution of genome size: New approaches to an old problem
-
Petrov, D.A. 2001. Evolution of genome size: New approaches to an old problem. Trends Genet. 17:23-28. doi:10.1016/S0168-9525(00)02157-0
-
(2001)
Trends Genet
, vol.17
, pp. 23-28
-
-
Petrov, D.A.1
-
48
-
-
0029856377
-
High intrinsic rate of DNA loss in Drosophila
-
Petrov, D.A., E.R. Lozovskaya, and D.L. Hartl. 1996. High intrinsic rate of DNA loss in Drosophila. Nature 384:346-349. doi:10.1038/384346a0
-
(1996)
Nature
, vol.384
, pp. 346-349
-
-
Petrov, D.A.1
Lozovskaya, E.R.2
Hartl, D.L.3
-
49
-
-
33749392949
-
Doubling genome size without polyploidization: Dynamics of retrotransposition driven genomic expansions in Oryza australiensis, a wild relative of rice
-
Piegu, B., R. Guyot, N. Picault, A. Roulin, A. Sanyal, H. Kim, K. Collura, D.S. Brar, S. Jackson, R.A. Wing, and O. Panaud. 2006. Doubling genome size without polyploidization: Dynamics of retrotransposition driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res. 16:1262-1269. doi:10.1101/gr.5290206
-
(2006)
Genome Res
, vol.16
, pp. 1262-1269
-
-
Piegu, B.1
Guyot, R.2
Picault, N.3
Roulin, A.4
Sanyal, A.5
Kim, H.6
Collura, K.7
Brar, D.S.8
Jackson, S.9
Wing, R.A.10
Panaud, O.11
-
50
-
-
11444267813
-
The repair of double-strand breaks in plants: Mechanisms and consequences for genome evolution
-
Puchta, H. 2005. The repair of double-strand breaks in plants: Mechanisms and consequences for genome evolution. J. Exp. Bot. 56:1-14. doi:10.1093/jxb/eri123
-
(2005)
J. Exp. Bot
, vol.56
, pp. 1-14
-
-
Puchta, H.1
-
51
-
-
0032422925
-
Pathways, mechanisms, and rates of polyploid formation in flowering plants
-
Ramsey, J., and D.W. Schemske. 1998. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst. 29:467-501. doi:10.1146/annurev.ecolsys.29.1.467
-
(1998)
Annu. Rev. Ecol. Syst
, vol.29
, pp. 467-501
-
-
Ramsey, J.1
Schemske, D.W.2
-
52
-
-
84878299934
-
Diploidization and genome size change in allopolyploids is associated with differential dynamics of low- and high-copy sequences
-
Renny-Byfield, S., A. Kovarik, L.J. Kelly, J. Macas, P. Novak, M.W. Chase, R.A. Nichols, M.R. Pancholi, M.-A. Grandbastien, and A.R. Leitch. 2013. Diploidization and genome size change in allopolyploids is associated with differential dynamics of low- and high-copy sequences. Plant J. 74:829-839. doi:10.1111/tpj.12168
-
(2013)
Plant J
, vol.74
, pp. 829-839
-
-
Renny-Byfield, S.1
Kovarik, A.2
Kelly, L.J.3
Macas, J.4
Novak, P.5
Chase, M.W.6
Nichols, R.A.7
Pancholi, M.R.8
Grandbastien, M.-A.9
Leitch, A.R.10
-
53
-
-
0031707062
-
The paleontology of intergene retrotransposons of maize
-
SanMiguel, P., B.S. Gaut, A. Tikhonov, Y. Nakajima, and J.L. Bennetzen. 1998. The paleontology of intergene retrotransposons of maize. Nat. Genet. 20:43-45. doi:10.1038/1695
-
(1998)
Nat. Genet
, vol.20
, pp. 43-45
-
-
Sanmiguel, P.1
Gaut, B.S.2
Tikhonov, A.3
Nakajima, Y.4
Bennetzen, J.L.5
-
54
-
-
79952200839
-
An Andean radiation: Polyploidy in the tree genus Polylepis (Rosaceae, Sanguisorbeae)
-
Schmidt-Lebuhn, A.N., J. Fuchs, D. Hertel, H. Hirsch, J. Toivonen, and M. Kessler. 2010. An Andean radiation: Polyploidy in the tree genus Polylepis (Rosaceae, Sanguisorbeae). Plant Biol. (Stuttg.) 12:917-926. doi:10.1111/j.1438-8677.2009.00297.x
-
(2010)
Plant Biol. (Stuttg.)
, vol.12
, pp. 917-926
-
-
Schmidt-Lebuhn, A.N.1
Fuchs, J.2
Hertel, D.3
Hirsch, H.4
Toivonen, J.5
Kessler, M.6
-
55
-
-
79956330054
-
Interpretation of karyotype evolution should consider chromosome structural constraints
-
Schubert, I., and M.A. Lysak. 2011. Interpretation of karyotype evolution should consider chromosome structural constraints. Trends Genet. 27:207-216. doi:10.1016/j.tig.2011.03.004
-
(2011)
Trends Genet
, vol.27
, pp. 207-216
-
-
Schubert, I.1
Lysak, M.A.2
-
56
-
-
0028167890
-
Sequence organization and the mechanism of interstitial deletion clustering in a plant genome (Vicia faba)
-
Schubert, I., R. Rieger, J. Fuchs, and U. Pich. 1994. Sequence organization and the mechanism of interstitial deletion clustering in a plant genome (Vicia faba). Mutat. Res. 325:1-5. doi:10.1016/0165-7992(94)90020-5
-
(1994)
Mutat. Res
, vol.325
, pp. 1-5
-
-
Schubert, I.1
Rieger, R.2
Fuchs, J.3
Pich, U.4
-
57
-
-
60249085527
-
Polyploidy and angiosperm diversification
-
Soltis, D.E., V.A. Albert, J. Leebens-Mack, C.D. Bell, A.H. Paterson, C. Zheng, D. Sankoff, C.W. Depamphilis, P.K. Wall, and P.S. Soltis. 2009. Polyploidy and angiosperm diversification. Am. J. Bot. 96:336-348. doi:10.3732/ajb.0800079
-
(2009)
Am. J. Bot
, vol.96
, pp. 336-348
-
-
Soltis, D.E.1
Albert, V.A.2
Leebens-Mack, J.3
Bell, C.D.4
Paterson, A.H.5
Zheng, C.6
Sankoff, D.7
Depamphilis, C.W.8
Wall, P.K.9
Soltis, P.S.10
-
58
-
-
0033198094
-
Polyploidy: Recurrent formation and genome evolution. Trends Ecol
-
Soltis, D.E., and P.S. Soltis. 1999. Polyploidy: Recurrent formation and genome evolution. Trends Ecol. Evol. 14:348-352. doi:10.1016/S01695347(99)01638-9
-
(1999)
Evol
, vol.14
, pp. 348-352
-
-
Soltis, D.E.1
Soltis, P.S.2
-
59
-
-
23144444421
-
AUGUSTUS: A web server for gene prediction in eukaryotes that allows user-defined constraints
-
Stanke, M., and B. Morgenstern. 2005. AUGUSTUS: A web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 33:W465-W467. doi:10.1093/nar/gki458
-
(2005)
Nucleic Acids Res
, vol.33
, pp. W465-W467
-
-
Stanke, M.1
Morgenstern, B.2
-
60
-
-
77955273950
-
A triptych of the evolution of plant transposable elements
-
Tenaillon, M.I., J.D. Hollister, and B.S. Gaut. 2010. A triptych of the evolution of plant transposable elements. Trends Plant Sci. 15:471-478. doi:10.1016/j.tplants.2010.05.003
-
(2010)
Trends Plant Sci
, vol.15
, pp. 471-478
-
-
Tenaillon, M.I.1
Hollister, J.D.2
Gaut, B.S.3
-
61
-
-
0034649566
-
Analysis of the genome sequence of the flowering plant Arabidopsis thaliana
-
The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796-815. doi:10.1038/35048692
-
(2000)
Nature
, vol.408
, pp. 796-815
-
-
-
62
-
-
0000822856
-
The genetic organization of chromosomes
-
Thomas, C.A. 1971. The genetic organization of chromosomes. Annu. Rev. Genet. 5:237-256. doi:10.1146/annurev.ge.05.120171.001321
-
(1971)
Annu. Rev. Genet
, vol.5
, pp. 237-256
-
-
Thomas, C.A.1
-
63
-
-
84946787990
-
Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea
-
(accepted)
-
Tran, T.D., H.X. Cao, G. Jovtchev, P. Neumann, P. Novak, M. Fojtova, G.T.H. Vu, J. Macas, J. Fajkus, I. Schubert, and J. Fuchs. 2015. Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea. Plant J. (accepted).
-
(2015)
Plant J
-
-
Tran, T.D.1
Cao, H.X.2
Jovtchev, G.3
Neumann, P.4
Novak, P.5
Fojtova, M.6
Vu, G.7
Macas, J.8
Fajkus, J.9
Schubert, I.10
Fuchs, J.11
-
64
-
-
77952123055
-
Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
-
Trapnell, C., B.A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M.J. van Baren, S.L. Salzberg, B.J. Wold, and L. Pachter. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28:511-515. doi:10.1038/nbt.1621
-
(2010)
Nat. Biotechnol
, vol.28
, pp. 511-515
-
-
Trapnell, C.1
Williams, B.A.2
Pertea, G.3
Mortazavi, A.4
Kwan, G.5
Van Baren, M.J.6
Salzberg, S.L.7
Wold, B.J.8
Pachter, L.9
-
65
-
-
84901610136
-
Genome size and genomic GC content evolution in the miniature genome-sized family Lentibulariaceae
-
Veleba, A., P. Bures, L. Adamec, P. Smarda, I. Lipnerova, and L. Horova. 2014. Genome size and genomic GC content evolution in the miniature genome-sized family Lentibulariaceae. New Phytol. 203:22-28. doi:10.1111/nph.12790
-
(2014)
New Phytol
, vol.203
, pp. 22-28
-
-
Veleba, A.1
Bures, P.2
Adamec, L.3
Smarda, P.4
Lipnerova, I.5
Horova, L.6
-
66
-
-
0032876994
-
Intron-genome size relationship on a large evolutionary scale
-
Vinogradov, A.E. 1999. Intron-genome size relationship on a large evolutionary scale. J. Mol. Evol. 49:376-384. doi:10.1007/PL00006561
-
(1999)
J. Mol. Evol
, vol.49
, pp. 376-384
-
-
Vinogradov, A.E.1
-
67
-
-
84903579362
-
Repair of site-specific DNA double-strand breaks in barley occurs via diverse pathways primarily involving the sister chromatid
-
Vu, G.T., H.X. Cao, K. Watanabe, G. Hensel, F.R. Blattner, J. Kumlehn, and I. Schubert. 2014. Repair of site-specific DNA double-strand breaks in barley occurs via diverse pathways primarily involving the sister chromatid. Plant Cell 26:2156-2167. doi:10.1105/tpc.114.126607
-
(2014)
Plant Cell
, vol.26
, pp. 2156-2167
-
-
Vu, G.T.1
Cao, H.X.2
Watanabe, K.3
Hensel, G.4
Blattner, F.R.5
Kumlehn, J.6
Schubert, I.7
-
68
-
-
84894377865
-
The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle
-
Wang, W., G. Haberer, H. Gundlach, C. Glasser, T. Nussbaumer, M.C. Luo, A. Lomsadze, M. Borodovsky, R.A. Kerstetter, J. Shanklin, D.W. Byrant, T.C. Mockler, K.J. Appenroth, J. Grimwood, J. Jenkins, J. Chow, C. Choi, C. Adam, X.H. Cao, J. Fuchs, I. Schubert, D. Rokhsar, J. Schmutz, T.P. Michael, K.F. Mayer, and J. Messing. 2014. The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat. Commun. 5:3311.
-
(2014)
Nat. Commun
, vol.5
, pp. 3311
-
-
Wang, W.1
Haberer, G.2
Gundlach, H.3
Glasser, C.4
Nussbaumer, T.5
Luo, M.C.6
Lomsadze, A.7
Borodovsky, M.8
Kerstetter, R.A.9
Shanklin, J.10
Byrant, D.W.11
Mockler, T.C.12
Appenroth, K.J.13
Grimwood, J.14
Jenkins, J.15
Chow, J.16
Choi, C.17
Adam, C.18
Cao, X.H.19
Fuchs, J.20
Schubert, I.21
Rokhsar, D.22
Schmutz, J.23
Michael, T.P.24
Mayer, K.F.25
Messing, J.26
more..
-
69
-
-
80053386792
-
The genome of the mesopolyploid crop species Brassica rapa
-
Wang, X., H. Wang, J. Wang, R. Sun, J. Wu, S. Liu, Y. Bai, J.H. Mun, I. Bancroft, F. Cheng, S. Huang, X. Li, W. Hua, M. Freeling, J.C. Pires, A.H. Paterson, B. Chalhoub, B. Wang, A. Hayward, A.G. Sharpe, B.S. Park, B. Weisshaar, B. Liu, B. Li, C. Tong, C. Song, C. Duran, C. Peng, C. Geng, C. Koh, C. Lin, D. Edwards, D. Mu, D. Shen, E. Soumpourou, F. Li, F. Fraser, G. Conant, G. Lassalle, G.J. King, G. Bonnema, H. Tang, H. Belcram, H. Zhou, H. Hirakawa, H. Abe, H. Guo, H. Wang, H. Jin, I.A.P. Parkin, J. Batley, J.S. Kim, J. Just, J. Li, J. Xu, J. Deng, J.A. Kim, J. Yu, J. Meng, J. Min, J. Poulain, K. Hatakeyama, K. Wu, L. Wang, L. Fang, M. Trick, M.G. Links, M. Zhao, M. Jin, N. Ramchiary, N. Drou, P.J. Berkman, Q. Cai, Q. Huang, R. Li, S. Tabata, S. Cheng, S. Zhang, S. Sato, S. Sun, S.J. Kwon, S.R. Choi, T.H. Lee, W. Fan, X. Zhao, X. Tan, X. Xu, Y. Wang, Y. Qiu, Y. Yin, Y. Li, Y. Du, Y. Liao, Y. Lim, Y. Narusaka, Z. Wang, Z. Li, Z. Wang, Z. Xiong, and Z. Zhang. 2011. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43:1035-1039. doi:10.1038/ng.919
-
(2011)
Nat. Genet
, vol.43
, pp. 1035-1039
-
-
Wang, X.1
Wang, H.2
Wang, J.3
Sun, R.4
Wu, J.5
Liu, S.6
Bai, Y.7
Mun, J.H.8
Bancroft, I.9
Cheng, F.10
Huang, S.11
Li, X.12
Hua, W.13
Freeling, M.14
Pires, J.C.15
Paterson, A.H.16
Chalhoub, B.17
Wang, B.18
Hayward, A.19
Sharpe, A.G.20
Park, B.S.21
Weisshaar, B.22
Liu, B.23
Li, B.24
Tong, C.25
Song, C.26
Duran, C.27
Peng, C.28
Geng, C.29
Koh, C.30
Lin, C.31
Edwards, D.32
Mu, D.33
Shen, D.34
Soumpourou, E.35
Li, F.36
Fraser, F.37
Conant, G.38
Lassalle, G.39
King, G.J.40
Bonnema, G.41
Tang, H.42
Belcram, H.43
Zhou, H.44
Hirakawa, H.45
Abe, H.46
Guo, H.47
Wang, H.48
Jin, H.49
Parkin, I.50
Batley, J.51
Kim, J.S.52
Just, J.53
Li, J.54
Xu, J.55
Deng, J.56
Kim, J.A.57
Yu, J.58
Meng, J.59
Min, J.60
Poulain, J.61
Hatakeyama, K.62
Wu, K.63
Wang, L.64
Fang, L.65
Trick, M.66
Links, M.G.67
Zhao, M.68
Jin, M.69
Ramchiary, N.70
Drou, N.71
Berkman, P.J.72
Cai, Q.73
Huang, Q.74
Li, R.75
Tabata, S.76
Cheng, S.77
Zhang, S.78
Sato, S.79
Sun, S.80
Kwon, S.J.81
Choi, S.R.82
Lee, T.H.83
Fan, W.84
Zhao, X.85
Tan, X.86
Xu, X.87
Wang, Y.88
Qiu, Y.89
Yin, Y.90
Li, Y.91
Du, Y.92
Liao, Y.93
Lim, Y.94
Narusaka, Y.95
Wang, Z.96
Li, Z.97
Wang, Z.98
Xiong, Z.99
Zhang, Z.100
more..
-
70
-
-
0036897696
-
Intron size and genome size in plants
-
Wendel, J.F., R.C. Cronn, I. Alvarez, B. Liu, R.L. Small, and D.S. Senchina. 2002. Intron size and genome size in plants. Mol. Biol. Evol. 19:2346-2352. doi:10.1093/oxfordjournals.molbev.a004062
-
(2002)
Mol. Biol. Evol
, vol.19
, pp. 2346-2352
-
-
Wendel, J.F.1
Cronn, R.C.2
Alvarez, I.3
Liu, B.4
Small, R.L.5
Senchina, D.S.6
-
71
-
-
80054991172
-
Targeted identification of short interspersed nuclear element families shows their widespread existence and extreme heterogeneity in plant genomes
-
Wenke, T., T. Dobel, T.R. Sorensen, H. Junghans, B. Weisshaar, and T. Schmidt. 2011. Targeted identification of short interspersed nuclear element families shows their widespread existence and extreme heterogeneity in plant genomes. Plant Cell 23:3117-3128. doi:10.1105/ tpc.111.088682
-
(2011)
Plant Cell
, vol.23
, pp. 3117-3128
-
-
Wenke, T.1
Dobel, T.2
Sorensen, T.R.3
Junghans, H.4
Weisshaar, B.5
Schmidt, T.6
-
72
-
-
34248669040
-
KaKs_ Calculator: Calculating Ka and Ks through model selection and model averaging. Genomics
-
Zhang, Z., J. Li, X.Q. Zhao, J. Wang, G.K. Wong, and J. Yu. 2006. KaKs_ Calculator: Calculating Ka and Ks through model selection and model averaging. Genomics, Proteomics Bioinf. 4:259-263. doi:10.1016/S1672- 0229(07)60007-2
-
(2006)
Proteomics Bioinf
, vol.4
, pp. 259-263
-
-
Zhang, Z.1
Li, J.2
Zhao, X.Q.3
Wang, J.4
Wong, G.K.5
Yu, J.6
|