메뉴 건너뛰기




Volumn 27, Issue 6, 2011, Pages 207-216

Interpretation of karyotype evolution should consider chromosome structural constraints

Author keywords

[No Author keywords available]

Indexed keywords

CENTROMERE; CHROMOSOME PAINTING; CHROMOSOME REARRANGEMENT; CHROMOSOME STRUCTURE; GENE FUSION; GENE MUTATION; GENOME; GENOMICS; HOMOLOGOUS RECOMBINATION; HUMAN; KARYOTYPE EVOLUTION; NONHUMAN; POLYPLOIDY; PRIORITY JOURNAL; RECIPROCAL CHROMOSOME TRANSLOCATION; REVIEW;

EID: 79956330054     PISSN: 01689525     EISSN: 01689525     Source Type: Journal    
DOI: 10.1016/j.tig.2011.03.004     Document Type: Review
Times cited : (236)

References (62)
  • 1
    • 8544240102 scopus 로고    scopus 로고
    • Overview of the yeast genome
    • Mewes H.W., et al. Overview of the yeast genome. Nature 1997, 387:7-65.
    • (1997) Nature , vol.387 , pp. 7-65
    • Mewes, H.W.1
  • 2
    • 0015269707 scopus 로고
    • A survey of DNA content per cell and per chromosome of prokaryotic and eukaryotic organisms: some evolutionary considerations
    • Sparrow A.H., et al. A survey of DNA content per cell and per chromosome of prokaryotic and eukaryotic organisms: some evolutionary considerations. Brookhaven Symp. Biol. 1972, 23:451-494.
    • (1972) Brookhaven Symp. Biol. , vol.23 , pp. 451-494
    • Sparrow, A.H.1
  • 3
    • 0024836339 scopus 로고
    • Chromosomal polymorphisms involving telomere fusion, centromeric inactivation and centromere shift in the ant Myrmecia (pilosula) n=1
    • Imai H.T., Taylor R.W. Chromosomal polymorphisms involving telomere fusion, centromeric inactivation and centromere shift in the ant Myrmecia (pilosula) n=1. Chromosoma 1989, 98:456-460.
    • (1989) Chromosoma , vol.98 , pp. 456-460
    • Imai, H.T.1    Taylor, R.W.2
  • 4
    • 84984158079 scopus 로고
    • Chromosome evolution in the genus Ophioglossum L
    • Khandelwal S. Chromosome evolution in the genus Ophioglossum L. Bot. J. Linn. Soc. 1990, 102:205-217.
    • (1990) Bot. J. Linn. Soc. , vol.102 , pp. 205-217
    • Khandelwal, S.1
  • 5
    • 84981991751 scopus 로고
    • Conservation of linkage relationships between genes as the underlying theme of karyological evolution in mammals
    • CRC Press
    • Ohno S. Conservation of linkage relationships between genes as the underlying theme of karyological evolution in mammals. Chromosomes in Evolution of Eukaryotic Groups 1984, Vol. 2:1-11. CRC Press.
    • (1984) Chromosomes in Evolution of Eukaryotic Groups , vol.2 , pp. 1-11
    • Ohno, S.1
  • 7
    • 0343319476 scopus 로고
    • Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4
    • Pinkel D., et al. Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc. Natl. Acad. Sci. U.S.A. 1988, 85:9138-9142.
    • (1988) Proc. Natl. Acad. Sci. U.S.A. , vol.85 , pp. 9138-9142
    • Pinkel, D.1
  • 8
    • 0007358460 scopus 로고
    • Rapid detection of human chromosome 21 aberrations by in situ hybridization
    • Lichter P., et al. Rapid detection of human chromosome 21 aberrations by in situ hybridization. Proc. Natl. Acad. Sci. U.S.A. 1988, 85:9664-9668.
    • (1988) Proc. Natl. Acad. Sci. U.S.A. , vol.85 , pp. 9664-9668
    • Lichter, P.1
  • 10
    • 17844379449 scopus 로고    scopus 로고
    • Chromosome triplication found across the tribe Brassiceae
    • Lysak M.A., et al. Chromosome triplication found across the tribe Brassiceae. Genome Res. 2005, 15:516-525.
    • (2005) Genome Res. , vol.15 , pp. 516-525
    • Lysak, M.A.1
  • 11
    • 33645508488 scopus 로고    scopus 로고
    • Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species
    • Lysak M.A., et al. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:5224-5229.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 5224-5229
    • Lysak, M.A.1
  • 12
    • 57749089666 scopus 로고    scopus 로고
    • Chromosomal phylogeny and karyotype evolution in x=7 crucifer species (Brassicaceae)
    • Mandáková T., Lysak M.A. Chromosomal phylogeny and karyotype evolution in x=7 crucifer species (Brassicaceae). Plant Cell 2008, 20:2559-2570.
    • (2008) Plant Cell , vol.20 , pp. 2559-2570
    • Mandáková, T.1    Lysak, M.A.2
  • 13
    • 77956810194 scopus 로고    scopus 로고
    • Fast diploidization in close mesopolyploid relatives of Arabidopsis
    • Mandáková T., et al. Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell 2010, 22:2277-2290.
    • (2010) Plant Cell , vol.22 , pp. 2277-2290
    • Mandáková, T.1
  • 14
    • 43549097168 scopus 로고    scopus 로고
    • Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution
    • Salse J., et al. Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 2008, 20:11-24.
    • (2008) Plant Cell , vol.20 , pp. 11-24
    • Salse, J.1
  • 15
    • 2442712340 scopus 로고    scopus 로고
    • Mining EST databases to resolve evolutionary events in major crop species
    • Schlueter J.A., et al. Mining EST databases to resolve evolutionary events in major crop species. Genome 2004, 47:868-876.
    • (2004) Genome , vol.47 , pp. 868-876
    • Schlueter, J.A.1
  • 16
    • 42949157236 scopus 로고    scopus 로고
    • The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus)
    • Ming R., et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 2008, 452:991-996.
    • (2008) Nature , vol.452 , pp. 991-996
    • Ming, R.1
  • 17
    • 0034649566 scopus 로고    scopus 로고
    • Analysis of the genome sequence of the flowering plant Arabidopsis thaliana
    • Arabidopsis Genome Initiative
    • Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000, 408:796-815.
    • (2000) Nature , vol.408 , pp. 796-815
  • 18
    • 70350630320 scopus 로고    scopus 로고
    • Three sequenced legume genomes and many crop species: rich opportunities for translational genomics
    • Cannon S.B., et al. Three sequenced legume genomes and many crop species: rich opportunities for translational genomics. Plant. Physiol. 2009, 151:970-977.
    • (2009) Plant. Physiol. , vol.151 , pp. 970-977
    • Cannon, S.B.1
  • 19
    • 76749150030 scopus 로고    scopus 로고
    • Genome sequencing and analysis of the model grass Brachypodium distachyon
    • International Brachypodium Initiative
    • International Brachypodium Initiative Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 2010, 463:763-768.
    • (2010) Nature , vol.463 , pp. 763-768
  • 20
    • 74549221016 scopus 로고    scopus 로고
    • Genome sequence of the palaeopolyploid soybean
    • Schmutz J., et al. Genome sequence of the palaeopolyploid soybean. Nature 2010, 463:178-183.
    • (2010) Nature , vol.463 , pp. 178-183
    • Schmutz, J.1
  • 21
    • 35348901902 scopus 로고    scopus 로고
    • Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size
    • Lysak M.A., et al. Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size. Plant Physiol. 2007, 145:402-410.
    • (2007) Plant Physiol. , vol.145 , pp. 402-410
    • Lysak, M.A.1
  • 22
    • 60249085527 scopus 로고    scopus 로고
    • Polyploidy and angiosperm diversification
    • Soltis D.E., et al. Polyploidy and angiosperm diversification. Am. J. Bot. 2009, 96:336-348.
    • (2009) Am. J. Bot. , vol.96 , pp. 336-348
    • Soltis, D.E.1
  • 23
    • 0028167890 scopus 로고
    • Sequence organization and the mechanism of interstitial deletion clustering in a plant genome (Vicia faba)
    • Schubert I., et al. Sequence organization and the mechanism of interstitial deletion clustering in a plant genome (Vicia faba). Mutat. Res. 1994, 325:1-5.
    • (1994) Mutat. Res. , vol.325 , pp. 1-5
    • Schubert, I.1
  • 24
    • 0001432372 scopus 로고
    • Mobile nucleolar organizing regions (NORs) in Allium (Liliaceae s. lat.) - inferences from the specificity of silver staining
    • Schubert I. Mobile nucleolar organizing regions (NORs) in Allium (Liliaceae s. lat.) - inferences from the specificity of silver staining. Plant Syst. Evol. 1984, 144:291-305.
    • (1984) Plant Syst. Evol. , vol.144 , pp. 291-305
    • Schubert, I.1
  • 25
    • 0034872749 scopus 로고    scopus 로고
    • Alteration of chromosome numbers by generation of minichromosomes - is there a lower limit of chromosome size for stable segregation? Cytogenet
    • Schubert I. Alteration of chromosome numbers by generation of minichromosomes - is there a lower limit of chromosome size for stable segregation? Cytogenet. Cell Genet. 2001, 93:175-181.
    • (2001) Cell Genet. , vol.93 , pp. 175-181
    • Schubert, I.1
  • 26
    • 77950955761 scopus 로고    scopus 로고
    • Origin of chromosomal translocations in lymphoid cancer
    • Nussenzweig A., Nussenzweig M.C. Origin of chromosomal translocations in lymphoid cancer. Cell 2010, 141:27-38.
    • (2010) Cell , vol.141 , pp. 27-38
    • Nussenzweig, A.1    Nussenzweig, M.C.2
  • 27
    • 77950955273 scopus 로고    scopus 로고
    • Homoeologous recombination in allopolyploids: the polyploid ratchet
    • Gaeta R.T., Pires J.C. Homoeologous recombination in allopolyploids: the polyploid ratchet. New Phytol. 2010, 186:18-28.
    • (2010) New Phytol. , vol.186 , pp. 18-28
    • Gaeta, R.T.1    Pires, J.C.2
  • 28
    • 77950929824 scopus 로고    scopus 로고
    • Homoeologous nonreciprocal recombination in polyploid cotton
    • Salmon A., et al. Homoeologous nonreciprocal recombination in polyploid cotton. New Phytol. 2010, 186:123-134.
    • (2010) New Phytol. , vol.186 , pp. 123-134
    • Salmon, A.1
  • 29
    • 34247866424 scopus 로고    scopus 로고
    • Homeologous recombination plays a major role in chromosome rearrangements that occur during meiosis of Brassica napus haploids
    • Nicolas S.D., et al. Homeologous recombination plays a major role in chromosome rearrangements that occur during meiosis of Brassica napus haploids. Genetics 2007, 175:487-503.
    • (2007) Genetics , vol.175 , pp. 487-503
    • Nicolas, S.D.1
  • 31
    • 0343904936 scopus 로고
    • Karyotype variability and evolution in Vicia faba L
    • Schubert I., et al. Karyotype variability and evolution in Vicia faba L. Biol. Zentralbl. 1982, 101:793-806.
    • (1982) Biol. Zentralbl. , vol.101 , pp. 793-806
    • Schubert, I.1
  • 32
    • 34250095645 scopus 로고
    • On the toleration of duplications and deletions by the Vicia faba genome
    • Schubert I., et al. On the toleration of duplications and deletions by the Vicia faba genome. Theor. Appl. Genet. 1988, 76:64-70.
    • (1988) Theor. Appl. Genet. , vol.76 , pp. 64-70
    • Schubert, I.1
  • 33
    • 2642642243 scopus 로고
    • An analysis of the process of structural change in chromosomes of Drosophila
    • Muller H.J. An analysis of the process of structural change in chromosomes of Drosophila. J. Genet. 1940, 40:1-66.
    • (1940) J. Genet. , vol.40 , pp. 1-66
    • Muller, H.J.1
  • 34
    • 3543142313 scopus 로고    scopus 로고
    • Two modes of survival of fission yeast without telomerase
    • Nakamura T.M., et al. Two modes of survival of fission yeast without telomerase. Science 1998, 282:493-496.
    • (1998) Science , vol.282 , pp. 493-496
    • Nakamura, T.M.1
  • 36
    • 0002134558 scopus 로고
    • A cytological study of Crepis fuliginosa, C. neglecta, and their F1 hybrid, and its bearing on the mechanism of phylogenetic reduction in chromosome number
    • Tobgy H.A. A cytological study of Crepis fuliginosa, C. neglecta, and their F1 hybrid, and its bearing on the mechanism of phylogenetic reduction in chromosome number. J. Genet. 1943, 45:67-111.
    • (1943) J. Genet. , vol.45 , pp. 67-111
    • Tobgy, H.A.1
  • 38
    • 16244366488 scopus 로고    scopus 로고
    • Genome evolution among cruciferous plants: a lecture from the comparison of the genetic maps of three diploid species - Capsella rubella, Arabidopsis lyrata subsp. petraea, and A. thaliana
    • Koch M.A., Kiefer M. Genome evolution among cruciferous plants: a lecture from the comparison of the genetic maps of three diploid species - Capsella rubella, Arabidopsis lyrata subsp. petraea, and A. thaliana. Am. J. Bot. 2005, 92:761-767.
    • (2005) Am. J. Bot. , vol.92 , pp. 761-767
    • Koch, M.A.1    Kiefer, M.2
  • 39
    • 70349471296 scopus 로고    scopus 로고
    • Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae
    • Luo M.C., et al. Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:15780-15785.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 15780-15785
    • Luo, M.C.1
  • 40
    • 70349319947 scopus 로고    scopus 로고
    • Evidence and evolutionary analysis of ancient whole-genome duplication in barley predating the divergence from rice
    • Thiel T., et al. Evidence and evolutionary analysis of ancient whole-genome duplication in barley predating the divergence from rice. BMC Evol. Biol. 2009, 9:209.
    • (2009) BMC Evol. Biol. , vol.9 , pp. 209
    • Thiel, T.1
  • 41
    • 77956459883 scopus 로고    scopus 로고
    • Palaeogenomics of plants: synteny-based modelling of extinct ancestors
    • Abrouk M., et al. Palaeogenomics of plants: synteny-based modelling of extinct ancestors. Trends Plant Sci. 2010, 15:479-487.
    • (2010) Trends Plant Sci. , vol.15 , pp. 479-487
    • Abrouk, M.1
  • 42
    • 78649312312 scopus 로고    scopus 로고
    • Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution
    • Murat F., et al. Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. Genome Res. 2010, 20:1545-1557.
    • (2010) Genome Res. , vol.20 , pp. 1545-1557
    • Murat, F.1
  • 43
    • 70349298447 scopus 로고    scopus 로고
    • Reconstruction of monocotyledonous proto-chromosomes reveals faster evolution in plants than in animals
    • Salse J., et al. Reconstruction of monocotyledonous proto-chromosomes reveals faster evolution in plants than in animals. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:14908-14913.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 14908-14913
    • Salse, J.1
  • 44
    • 22244451706 scopus 로고    scopus 로고
    • Stable barley chromosomes without centromeric repeats
    • Nasuda S., et al. Stable barley chromosomes without centromeric repeats. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:9842-9847.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 9842-9847
    • Nasuda, S.1
  • 45
    • 33644769143 scopus 로고    scopus 로고
    • High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize
    • Han F., et al. High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:3238-3243.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 3238-3243
    • Han, F.1
  • 46
    • 0029177255 scopus 로고
    • Alteration of basic chromosome number by fusion-fission cycles
    • Schubert I., et al. Alteration of basic chromosome number by fusion-fission cycles. Genome 1995, 38:1289-1292.
    • (1995) Genome , vol.38 , pp. 1289-1292
    • Schubert, I.1
  • 47
    • 0036988394 scopus 로고    scopus 로고
    • Stabilization of a terminal inversion duplication of 8p by telomere capture from 18q
    • Kostiner D.R., et al. Stabilization of a terminal inversion duplication of 8p by telomere capture from 18q. Cytogenet. Genome Res. 2002, 98:9-12.
    • (2002) Cytogenet. Genome Res. , vol.98 , pp. 9-12
    • Kostiner, D.R.1
  • 48
    • 0025743438 scopus 로고
    • Telomerase primer specificity and chromosome healing
    • Harrington L.A., Greider C.W. Telomerase primer specificity and chromosome healing. Nature 1991, 353:451-454.
    • (1991) Nature , vol.353 , pp. 451-454
    • Harrington, L.A.1    Greider, C.W.2
  • 49
    • 0033390250 scopus 로고    scopus 로고
    • De novo synthesis of telomere sequences at the healed breakpoints of wheat deletion chromosomes
    • Tsujimoto H., et al. De novo synthesis of telomere sequences at the healed breakpoints of wheat deletion chromosomes. Mol. Gen. Genet. 1999, 262:851-856.
    • (1999) Mol. Gen. Genet. , vol.262 , pp. 851-856
    • Tsujimoto, H.1
  • 50
    • 0002592669 scopus 로고
    • A new mechanism for altering chromosome-number during karyotype evolution
    • Schubert I., Rieger R. A new mechanism for altering chromosome-number during karyotype evolution. Theor. Appl. Genet. 1985, 70:213-221.
    • (1985) Theor. Appl. Genet. , vol.70 , pp. 213-221
    • Schubert, I.1    Rieger, R.2
  • 51
    • 34547634071 scopus 로고    scopus 로고
    • Physical and genetic structure of the maize genome reflects its complex evolutionary history
    • Wei F., et al. Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet. 2007, 3:e123.
    • (2007) PLoS Genet. , vol.3
    • Wei, F.1
  • 52
    • 73649087948 scopus 로고    scopus 로고
    • The physical and genetic framework of the maize B73 genome
    • Wei F., et al. The physical and genetic framework of the maize B73 genome. PLoS Genet. 2009, 5:e1000715.
    • (2009) PLoS Genet. , vol.5
    • Wei, F.1
  • 53
    • 0036783383 scopus 로고    scopus 로고
    • Neocentromeres: role in human disease, evolution, and centromere study
    • Amor D.J., Choo K.H. Neocentromeres: role in human disease, evolution, and centromere study. Am. J. Hum. Genet. 2002, 71:695-714.
    • (2002) Am. J. Hum. Genet. , vol.71 , pp. 695-714
    • Amor, D.J.1    Choo, K.H.2
  • 54
    • 0034845229 scopus 로고    scopus 로고
    • The activation of a neocentromere in Drosophila requires proximity to an endogenous centromere
    • Maggert K.A., Karpen G.H. The activation of a neocentromere in Drosophila requires proximity to an endogenous centromere. Genetics 2001, 158:1615-1628.
    • (2001) Genetics , vol.158 , pp. 1615-1628
    • Maggert, K.A.1    Karpen, G.H.2
  • 55
    • 34247360439 scopus 로고    scopus 로고
    • Evolutionary formation of new centromeres in macaque
    • Ventura M., et al. Evolutionary formation of new centromeres in macaque. Science 2007, 316:243-246.
    • (2007) Science , vol.316 , pp. 243-246
    • Ventura, M.1
  • 56
    • 77649206825 scopus 로고    scopus 로고
    • Uncoupling of satellite DNA and centromeric function in the genus Equus
    • Piras F.M., et al. Uncoupling of satellite DNA and centromeric function in the genus Equus. PLoS Genet. 2010, 6:e1000845.
    • (2010) PLoS Genet. , vol.6
    • Piras, F.M.1
  • 57
    • 70349292204 scopus 로고    scopus 로고
    • Centromere repositioning in cucurbit species: implication of the genomic impact from centromere activation and inactivation
    • Han Y., et al. Centromere repositioning in cucurbit species: implication of the genomic impact from centromere activation and inactivation. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:14937-14941.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 14937-14941
    • Han, Y.1
  • 58
    • 70649085835 scopus 로고    scopus 로고
    • The genome of the cucumber
    • Huang S., et al. The genome of the cucumber. Cucumis sativus L. Nat. Genet. 2009, 41:1275-1281.
    • (2009) Cucumis sativus L. Nat. Genet. , vol.41 , pp. 1275-1281
    • Huang, S.1
  • 59
    • 40549104792 scopus 로고    scopus 로고
    • Extrachromosomal circular DNA derived from tandemly repeated genomic sequences in plants
    • Cohen S., et al. Extrachromosomal circular DNA derived from tandemly repeated genomic sequences in plants. Plant J. 2008, 53:1027-1034.
    • (2008) Plant J. , vol.53 , pp. 1027-1034
    • Cohen, S.1
  • 60
    • 52249116302 scopus 로고    scopus 로고
    • Survey of extrachromosomal circular DNA derived from plant satellite repeats
    • Navrátilova A., et al. Survey of extrachromosomal circular DNA derived from plant satellite repeats. BMC Plant Biol. 2008, 8:90.
    • (2008) BMC Plant Biol. , vol.8 , pp. 90
    • Navrátilova, A.1
  • 61
    • 0034675997 scopus 로고    scopus 로고
    • Species-specific double-strand break repair and genome evolution in plants
    • Kirik A., et al. Species-specific double-strand break repair and genome evolution in plants. EMBO J. 2000, 19:5562-5566.
    • (2000) EMBO J. , vol.19 , pp. 5562-5566
    • Kirik, A.1
  • 62
    • 77956284088 scopus 로고    scopus 로고
    • Patching gaps in plant genomes results in gene movement and erosion of colinearity
    • Wicker T., et al. Patching gaps in plant genomes results in gene movement and erosion of colinearity. Genome Res. 2010, 20:1229-1237.
    • (2010) Genome Res. , vol.20 , pp. 1229-1237
    • Wicker, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.