-
1
-
-
33846901901
-
Intermediates: ubiquitous species on folding energy landscapes?
-
Brockwell DJ, Radford SE. Intermediates: ubiquitous species on folding energy landscapes? Curr Opin Struct Biol. 2007; 17: 30–7.
-
(2007)
Curr Opin Struct Biol
, vol.17
, pp. 30-37
-
-
Brockwell, D.J.1
Radford, S.E.2
-
2
-
-
84989284335
-
Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies
-
Ciechanover A, Kwon YT. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med. 2015; 47: e147.
-
(2015)
Exp Mol Med
, vol.47
-
-
Ciechanover, A.1
Kwon, Y.T.2
-
3
-
-
33646127577
-
Molecular chaperones and protein quality control
-
Bukau B, Weissman J, Horwich A. Molecular chaperones and protein quality control. Cell. 2006; 125: 443–51.
-
(2006)
Cell
, vol.125
, pp. 443-451
-
-
Bukau, B.1
Weissman, J.2
Horwich, A.3
-
4
-
-
84879049031
-
The ART-Rsp5 ubiquitin ligase network comprises a plasma membrane quality control system that protects yeast cells from proteotoxic stress
-
Zhao Y, Macgurn JA, Liu M, et al. The ART-Rsp5 ubiquitin ligase network comprises a plasma membrane quality control system that protects yeast cells from proteotoxic stress. Elife. 2013; 2: e00459.
-
(2013)
Elife
, vol.2
-
-
Zhao, Y.1
Macgurn, J.A.2
Liu, M.3
-
5
-
-
33750363298
-
The roles of intracellular protein-degradation pathways in neurodegeneration
-
David CR. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature. 2006; 443: 780–6.
-
(2006)
Nature
, vol.443
, pp. 780-786
-
-
David, C.R.1
-
6
-
-
84923239496
-
Neuronal aggregates: formation, clearance, and spreading
-
Lim J, Yue Z. Neuronal aggregates: formation, clearance, and spreading. Dev Cell. 2015; 32: 491–501.
-
(2015)
Dev Cell
, vol.32
, pp. 491-501
-
-
Lim, J.1
Yue, Z.2
-
7
-
-
84921435917
-
Failure of ubiquitin proteasome system: risk for neurodegenerative diseases
-
Zheng C, Geetha T, Babu JR. Failure of ubiquitin proteasome system: risk for neurodegenerative diseases. Neurodegener Dis. 2014; 14: 161–75.
-
(2014)
Neurodegener Dis
, vol.14
, pp. 161-175
-
-
Zheng, C.1
Geetha, T.2
Babu, J.R.3
-
8
-
-
41649091606
-
Relative structural and functional roles of multiple deubiquitylating proteins associated with mammalian 26S proteasome
-
Koulich E, Li X, DeMartino GN. Relative structural and functional roles of multiple deubiquitylating proteins associated with mammalian 26S proteasome. Mol Biol Cell. 2008; 19: 1072–82.
-
(2008)
Mol Biol Cell
, vol.19
, pp. 1072-1082
-
-
Koulich, E.1
Li, X.2
DeMartino, G.N.3
-
9
-
-
0035070672
-
The substrate translocation channel of the proteasome
-
Köhler A, Bajorek M, Groll M, et al. The substrate translocation channel of the proteasome. Biochimie. 2001; 83: 325–32.
-
(2001)
Biochimie
, vol.83
, pp. 325-332
-
-
Köhler, A.1
Bajorek, M.2
Groll, M.3
-
10
-
-
28044457195
-
The amyloid stretch hypothesis: recruiting proteins toward the dark side
-
Alexandra E, Luis S, Manuela LP. The amyloid stretch hypothesis: recruiting proteins toward the dark side. PANAS. 2005; 102: 16672–7.
-
(2005)
PANAS
, vol.102
, pp. 16672-16677
-
-
Alexandra, E.1
Luis, S.2
Manuela, L.P.3
-
12
-
-
38449094180
-
Role of the ubiquitin proteasome system in Alzheimer's disease
-
Upadhya SC, Hegde AN. Role of the ubiquitin proteasome system in Alzheimer's disease. BMC Biochem. 2007; 8 (Suppl. 1): S12.
-
(2007)
BMC Biochem
, vol.8
, pp. 12
-
-
Upadhya, S.C.1
Hegde, A.N.2
-
13
-
-
84894292228
-
Relationship between amyloid-beta and the ubiquitin-proteasome system in Alzheimer's disease
-
Hong L, Huang HC, Jiang ZF. Relationship between amyloid-beta and the ubiquitin-proteasome system in Alzheimer's disease. Neurol Res. 2014; 36: 276–82.
-
(2014)
Neurol Res
, vol.36
, pp. 276-282
-
-
Hong, L.1
Huang, H.C.2
Jiang, Z.F.3
-
14
-
-
84920999733
-
An optimal ubiquitin-proteasome pathway in the nervous system: the role of deubiquitinating enzymes
-
Ristic G, Tsou WL, Todi SV. An optimal ubiquitin-proteasome pathway in the nervous system: the role of deubiquitinating enzymes. Front Mol Neurosci. 2014; 7: 72.
-
(2014)
Front Mol Neurosci
, vol.7
, pp. 72
-
-
Ristic, G.1
Tsou, W.L.2
Todi, S.V.3
-
15
-
-
84905257556
-
The ubiquitin-proteasome system in neurodegenerative diseases: precipitating factor, yet part of the solution
-
Dantuma NP, Bott LC. The ubiquitin-proteasome system in neurodegenerative diseases: precipitating factor, yet part of the solution. Front Mol Neurosci. 2014; 7: 70.
-
(2014)
Front Mol Neurosci
, vol.7
, pp. 70
-
-
Dantuma, N.P.1
Bott, L.C.2
-
16
-
-
33745674468
-
Drug discovery in the ubiquitin-proteasome system
-
Nalepa G, Rolfe M, Harper JW. Drug discovery in the ubiquitin-proteasome system. Nat Rev Drug Discov. 2006; 5: 596–613.
-
(2006)
Nat Rev Drug Discov
, vol.5
, pp. 596-613
-
-
Nalepa, G.1
Rolfe, M.2
Harper, J.W.3
-
17
-
-
54249158324
-
Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction
-
Tai H-C, Schuman EM. Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat Rev Neurosci. 2008; 9: 826–38.
-
(2008)
Nat Rev Neurosci
, vol.9
, pp. 826-838
-
-
Tai, H.-C.1
Schuman, E.M.2
-
18
-
-
34250011799
-
The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases
-
Wang J, Maldonado MA. The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases. Cell Mol Immunol. 2006; 3: 255–61.
-
(2006)
Cell Mol Immunol
, vol.3
, pp. 255-261
-
-
Wang, J.1
Maldonado, M.A.2
-
19
-
-
33745816760
-
Protein degradation by the ubiquitin-proteasome pathway in normal and disease states
-
Lecker SH, Goldberg AL, Mitch WE. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol. 2006; 17: 1807–19.
-
(2006)
J Am Soc Nephrol
, vol.17
, pp. 1807-1819
-
-
Lecker, S.H.1
Goldberg, A.L.2
Mitch, W.E.3
-
20
-
-
79951483258
-
Structure, assembly and homeostatic regulation of the 26S proteasome
-
Xie Y. Structure, assembly and homeostatic regulation of the 26S proteasome. J Mol Cell Biol. 2010; 2: 308–17.
-
(2010)
J Mol Cell Biol
, vol.2
, pp. 308-317
-
-
Xie, Y.1
-
21
-
-
77449103325
-
Therapeutic strategies within the ubiquitin proteasome system
-
Eldridge AG, O'Brien T. Therapeutic strategies within the ubiquitin proteasome system. Cell Death Differ. 2010; 17: 4–13.
-
(2010)
Cell Death Differ
, vol.17
, pp. 4-13
-
-
Eldridge, A.G.1
O'Brien, T.2
-
22
-
-
84868115008
-
Protein homeostasis, aging and Alzheimer's disease
-
Morawe T, Hiebel C, Kern A, et al. Protein homeostasis, aging and Alzheimer's disease. Mol Neurobiol. 2012; 46: 41–54.
-
(2012)
Mol Neurobiol
, vol.46
, pp. 41-54
-
-
Morawe, T.1
Hiebel, C.2
Kern, A.3
-
23
-
-
68049084674
-
Breaking the chains: structure and function of the deubiquitinases
-
Komander D, Clague MJ, Urbe S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol. 2009; 10: 550–63.
-
(2009)
Nat Rev Mol Cell Biol
, vol.10
, pp. 550-563
-
-
Komander, D.1
Clague, M.J.2
Urbe, S.3
-
24
-
-
0346727127
-
Protein degradation and protection against misfolded or damaged proteins
-
Goldberg AL. Protein degradation and protection against misfolded or damaged proteins. Nature. 2003; 426: 895–9.
-
(2003)
Nature
, vol.426
, pp. 895-899
-
-
Goldberg, A.L.1
-
25
-
-
84893519818
-
Polyubiquitin chain assembly and organization determine the dynamics of protein activation and degradation
-
Nguyen LK, Dobrzyński M, Fey D, et al. Polyubiquitin chain assembly and organization determine the dynamics of protein activation and degradation. Front Physiol. 2014; 5: 4.
-
(2014)
Front Physiol
, vol.5
, pp. 4
-
-
Nguyen, L.K.1
Dobrzyński, M.2
Fey, D.3
-
26
-
-
68349108020
-
The ubiquitin proteasome system in neuropathology
-
Lehman NL. The ubiquitin proteasome system in neuropathology. Acta Neuropathol. 2009; 118: 329–47.
-
(2009)
Acta Neuropathol
, vol.118
, pp. 329-347
-
-
Lehman, N.L.1
-
27
-
-
84872773589
-
Functions of the 19S complex in proteasomal degradation
-
Liu CW, Jacobson AD. Functions of the 19S complex in proteasomal degradation. Trends Biochem Sci. 2013; 38: 103–10.
-
(2013)
Trends Biochem Sci
, vol.38
, pp. 103-110
-
-
Liu, C.W.1
Jacobson, A.D.2
-
28
-
-
0038449224
-
Otubains: a new family of cysteine proteases in the ubiquitin pathway
-
Balakirev MY, Tcherniuk SO, Jaquinod M, et al. Otubains: a new family of cysteine proteases in the ubiquitin pathway. EMBO Rep. 2003; 4: 517–22.
-
(2003)
EMBO Rep
, vol.4
, pp. 517-522
-
-
Balakirev, M.Y.1
Tcherniuk, S.O.2
Jaquinod, M.3
-
29
-
-
53149123284
-
Structure of the human 26S proteasome: subunit radial displacements open the gate into the proteolytic core
-
da Fonseca PC, Morris EP. Structure of the human 26S proteasome: subunit radial displacements open the gate into the proteolytic core. J Biol Chem. 2008; 283: 23305–14.
-
(2008)
J Biol Chem
, vol.283
, pp. 23305-23314
-
-
da Fonseca, P.C.1
Morris, E.P.2
-
30
-
-
0034131044
-
Impaired proteasome function in Alzheimer's disease
-
Keller JN, Hanni KB, Markesbery WR. Impaired proteasome function in Alzheimer's disease. J Neurochem. 2000; 75: 436–9.
-
(2000)
J Neurochem
, vol.75
, pp. 436-439
-
-
Keller, J.N.1
Hanni, K.B.2
Markesbery, W.R.3
-
32
-
-
33749069075
-
ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome
-
Liu C-W, Li X, Thompson D, et al. ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome. Mol Cell. 2006; 24: 39–50.
-
(2006)
Mol Cell
, vol.24
, pp. 39-50
-
-
Liu, C.-W.1
Li, X.2
Thompson, D.3
-
33
-
-
27744461250
-
Immunoproteasome and LMP2 polymorphism in aged and Alzheimer's disease brains
-
Mishto M, Bellavista E, Santoro A, et al. Immunoproteasome and LMP2 polymorphism in aged and Alzheimer's disease brains. Neurobiol Aging. 2006; 27: 54–66.
-
(2006)
Neurobiol Aging
, vol.27
, pp. 54-66
-
-
Mishto, M.1
Bellavista, E.2
Santoro, A.3
-
34
-
-
84877306949
-
Reactive glia show increased immunoproteasome activity in Alzheimer's disease
-
Orre M, Kamphuis W, Dooves S, et al. Reactive glia show increased immunoproteasome activity in Alzheimer's disease. Brain. 2013; 136: 1415–31.
-
(2013)
Brain
, vol.136
, pp. 1415-1431
-
-
Orre, M.1
Kamphuis, W.2
Dooves, S.3
-
35
-
-
59249084491
-
The proteasome: overview of structure and functions
-
Tanaka K. The proteasome: overview of structure and functions. Proc Jpn Acad Ser B Phys Biol Sci. 2009; 85: 12–36.
-
(2009)
Proc Jpn Acad Ser B Phys Biol Sci
, vol.85
, pp. 12-36
-
-
Tanaka, K.1
-
36
-
-
84920601374
-
Roles of the ubiquitin proteasome system in the effects of drugs of abuse
-
Massaly N, Frances B, Mouledous L. Roles of the ubiquitin proteasome system in the effects of drugs of abuse. Front Mol Neurosci. 2015; 7: 99.
-
(2015)
Front Mol Neurosci
, vol.7
, pp. 99
-
-
Massaly, N.1
Frances, B.2
Mouledous, L.3
-
37
-
-
84862750546
-
Immunoproteasomes: structure, function, and antigen presentation
-
Ferrington DA, Gregerson DS. Immunoproteasomes: structure, function, and antigen presentation. Prog Mol Biol Transl Sci. 2012; 109: 75–112.
-
(2012)
Prog Mol Biol Transl Sci
, vol.109
, pp. 75-112
-
-
Ferrington, D.A.1
Gregerson, D.S.2
-
38
-
-
84855199977
-
Proteasomal AAA-ATPases: structure and function
-
Bar-Nun S, Glickman MH. Proteasomal AAA-ATPases: structure and function. Biochim Biophys Acta. 2012; 1823: 67–82.
-
(2012)
Biochim Biophys Acta
, vol.1823
, pp. 67-82
-
-
Bar-Nun, S.1
Glickman, M.H.2
-
39
-
-
77954314106
-
Assembly, structure, and function of the 26S proteasome
-
Bedford L, Paine S, Sheppard PW, et al. Assembly, structure, and function of the 26S proteasome. Trends Cell Biol. 2010; 20: 391–401.
-
(2010)
Trends Cell Biol
, vol.20
, pp. 391-401
-
-
Bedford, L.1
Paine, S.2
Sheppard, P.W.3
-
40
-
-
0030016595
-
Structure and functions of the 20S and 26S proteasomes
-
Coux O, Tanaka K, Goldberg AL. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem. 1996; 65: 801–47.
-
(1996)
Annu Rev Biochem
, vol.65
, pp. 801-847
-
-
Coux, O.1
Tanaka, K.2
Goldberg, A.L.3
-
41
-
-
0035072229
-
Degradation of oxidized proteins by the 20S proteasome
-
Davies KJ. Degradation of oxidized proteins by the 20S proteasome. Biochimie. 2001; 83: 301–10.
-
(2001)
Biochimie
, vol.83
, pp. 301-310
-
-
Davies, K.J.1
-
42
-
-
84878851013
-
The proteasome and the degradation of oxidized proteins: part I—structure of proteasomes
-
Jung T, Grune T. The proteasome and the degradation of oxidized proteins: part I—structure of proteasomes. Redox Biol. 2013; 1: 178–82.
-
(2013)
Redox Biol
, vol.1
, pp. 178-182
-
-
Jung, T.1
Grune, T.2
-
43
-
-
27844548672
-
The proteasome in Alzheimer's disease and Parkinson's disease: lessons from ubiquitin B + 1
-
Hol EM, van Leeuwen FW, Fischer DF. The proteasome in Alzheimer's disease and Parkinson's disease: lessons from ubiquitin B + 1. Trends Mol Med. 2005; 11: 488–95.
-
(2005)
Trends Mol Med
, vol.11
, pp. 488-495
-
-
Hol, E.M.1
van Leeuwen, F.W.2
Fischer, D.F.3
-
44
-
-
0032867676
-
The 26S proteasome: a molecular machine designed for controlled proteolysis
-
Voges D, Zwickl P, Baumeister W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem. 1999; 68: 1015–68.
-
(1999)
Annu Rev Biochem
, vol.68
, pp. 1015-1068
-
-
Voges, D.1
Zwickl, P.2
Baumeister, W.3
-
45
-
-
84863338481
-
Stable incorporation of ATPase subunits into 19 S regulatory particle of human proteasome requires nucleotide binding and C-terminal tails
-
Lee S-H, Moon J-H, Yoon SK, et al. Stable incorporation of ATPase subunits into 19 S regulatory particle of human proteasome requires nucleotide binding and C-terminal tails. J Biol Chem. 2012; 287: 9269–79.
-
(2012)
J Biol Chem
, vol.287
, pp. 9269-9279
-
-
Lee, S.-H.1
Moon, J.-H.2
Yoon, S.K.3
-
46
-
-
23944474593
-
Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting
-
Ciechanover A. Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Cell Death Differ. 2005; 12: 1178–90.
-
(2005)
Cell Death Differ
, vol.12
, pp. 1178-1190
-
-
Ciechanover, A.1
-
47
-
-
42949096020
-
Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases
-
Rabl J, Smith DM, Yu Y, et al. Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol Cell. 2008; 30: 360–8.
-
(2008)
Mol Cell
, vol.30
, pp. 360-368
-
-
Rabl, J.1
Smith, D.M.2
Yu, Y.3
-
48
-
-
0037248908
-
ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation
-
Benaroudj N, Zwickl P, Seemüller E, et al. ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Mol Cell. 2003; 11: 69–78.
-
(2003)
Mol Cell
, vol.11
, pp. 69-78
-
-
Benaroudj, N.1
Zwickl, P.2
Seemüller, E.3
-
49
-
-
84927535922
-
Substrate degradation by the proteasome: a single-molecule kinetic analysis
-
Lu Y, B-h Lee, King RW, et al. Substrate degradation by the proteasome: a single-molecule kinetic analysis. Science. 2015; 348: 1250834.
-
(2015)
Science
, vol.348
, pp. 1250834
-
-
Lu, Y.1
B-h, L.2
King, R.W.3
-
50
-
-
79151485014
-
Role of ubiquitin-proteasome-mediated proteolysis in nervous system disease
-
Hegde AN, Upadhya SC. Role of ubiquitin-proteasome-mediated proteolysis in nervous system disease. Biochim Biophys Acta. 2011; 1809: 128–40.
-
(2011)
Biochim Biophys Acta
, vol.1809
, pp. 128-140
-
-
Hegde, A.N.1
Upadhya, S.C.2
-
51
-
-
84944890971
-
Neuronal response in Alzheimer's and Parkinson's disease: the effect of toxic proteins on intracellular pathways
-
Majd S, Power JH, Grantham HJ. Neuronal response in Alzheimer's and Parkinson's disease: the effect of toxic proteins on intracellular pathways. BMC Neurosci. 2015; 16: 69.
-
(2015)
BMC Neurosci
, vol.16
, pp. 69
-
-
Majd, S.1
Power, J.H.2
Grantham, H.J.3
-
52
-
-
84925355903
-
Binding of human proteins to amyloid-beta protofibrils
-
Rahman M, Zetterberg H, Lendel C, et al. Binding of human proteins to amyloid-beta protofibrils. ACS Chem Biol. 2015; 10: 766–74.
-
(2015)
ACS Chem Biol
, vol.10
, pp. 766-774
-
-
Rahman, M.1
Zetterberg, H.2
Lendel, C.3
-
53
-
-
84878820361
-
The ubiquitin proteasome system as a potential target for the treatment of neurodegenerative diseases
-
Ying Z, Wang H, Wang G. The ubiquitin proteasome system as a potential target for the treatment of neurodegenerative diseases. Curr Pharm Des. 2013; 19: 3305–14.
-
(2013)
Curr Pharm Des
, vol.19
, pp. 3305-3314
-
-
Ying, Z.1
Wang, H.2
Wang, G.3
-
54
-
-
78650595038
-
Increased vesicular glutamate transporter expression causes excitotoxic neurodegeneration
-
Daniels RW, Miller BR, DiAntonio A. Increased vesicular glutamate transporter expression causes excitotoxic neurodegeneration. Neurobiol Dis. 2011; 41: 415–20.
-
(2011)
Neurobiol Dis
, vol.41
, pp. 415-420
-
-
Daniels, R.W.1
Miller, B.R.2
DiAntonio, A.3
-
55
-
-
77955570062
-
Glutamate receptors, neurotoxicity and neurodegeneration
-
Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch. 2010; 460: 525–42.
-
(2010)
Pflugers Arch
, vol.460
, pp. 525-542
-
-
Lau, A.1
Tymianski, M.2
-
56
-
-
84969884761
-
Nrf2-a therapeutic target for the treatment of neurodegenerative diseases
-
Johnson DA, Johnson JA. Nrf2-a therapeutic target for the treatment of neurodegenerative diseases. Free Radic Biol Med. 2015; 88: 253–67.
-
(2015)
Free Radic Biol Med
, vol.88
, pp. 253-267
-
-
Johnson, D.A.1
Johnson, J.A.2
-
57
-
-
84937019697
-
Mitochondrial dysfunction contributes to the pathogenesis of Alzheimer's disease
-
Cabezas-Opazo FA, et al. Mitochondrial dysfunction contributes to the pathogenesis of Alzheimer's disease. Oxid Med Cell Longev. 2015; 2015: 509654.
-
(2015)
Oxid Med Cell Longev
, vol.2015
, pp. 509654
-
-
Cabezas-Opazo, F.A.1
-
58
-
-
84919384297
-
Does metabolic failure at the synapse cause Alzheimer's disease?
-
Engel PA. Does metabolic failure at the synapse cause Alzheimer's disease? Med Hypotheses. 2014; 83: 802–8.
-
(2014)
Med Hypotheses
, vol.83
, pp. 802-808
-
-
Engel, P.A.1
-
59
-
-
84977531429
-
Metal homeostasis in dementia
-
Sensi S. Metal homeostasis in dementia. Free Radic Biol Med. 2014; 75 (Suppl. 1): S9.
-
(2014)
Free Radic Biol Med
, vol.75
, pp. 9
-
-
Sensi, S.1
-
60
-
-
77954416653
-
The ubiquitin-proteasome pathway and synaptic plasticity
-
Hegde AN. The ubiquitin-proteasome pathway and synaptic plasticity. Learn Mem. 2010; 17: 314–27.
-
(2010)
Learn Mem
, vol.17
, pp. 314-327
-
-
Hegde, A.N.1
-
61
-
-
0036678959
-
Role and function of the 26S proteasome in proliferation and apoptosis
-
Naujokat C, Hoffmann S. Role and function of the 26S proteasome in proliferation and apoptosis. Lab Invest. 2002; 82: 965–80.
-
(2002)
Lab Invest
, vol.82
, pp. 965-980
-
-
Naujokat, C.1
Hoffmann, S.2
-
62
-
-
7444250507
-
Degradation of BACE by the ubiquitin-proteasome pathway
-
Qing H, Zhou W, Christensen MA, et al. Degradation of BACE by the ubiquitin-proteasome pathway. FASEB J. 2004; 18: 1571–3.
-
(2004)
FASEB J
, vol.18
, pp. 1571-1573
-
-
Qing, H.1
Zhou, W.2
Christensen, M.A.3
-
63
-
-
84858195896
-
New pharmacological strategies for treatment of Alzheimer's disease: focus on disease modifying drugs
-
Salomone S, Caraci F, Leggio GM, et al. New pharmacological strategies for treatment of Alzheimer's disease: focus on disease modifying drugs. Br J Clin Pharmacol. 2012; 73: 504–17.
-
(2012)
Br J Clin Pharmacol
, vol.73
, pp. 504-517
-
-
Salomone, S.1
Caraci, F.2
Leggio, G.M.3
-
64
-
-
84887384043
-
New treatment strategies for Alzheimer's disease: is there a hope?
-
Aprahamian I, Stella F, Forlenza OV. New treatment strategies for Alzheimer's disease: is there a hope? Indian J Med Res. 2013; 138: 449–60.
-
(2013)
Indian J Med Res
, vol.138
, pp. 449-460
-
-
Aprahamian, I.1
Stella, F.2
Forlenza, O.V.3
-
65
-
-
77954743474
-
Possibilities of preventive treatment of Alzheimer's disease: results of the 3-year open prospective comparative study on the efficacy and safety of the course therapy with cerebrolysin and cavinton in elderly patients with the syndrome of mild cognitive impairment
-
Gavrilova SI, Kolykhalov IV, Fedorova YB, et al. Possibilities of preventive treatment of Alzheimer's disease: results of the 3-year open prospective comparative study on the efficacy and safety of the course therapy with cerebrolysin and cavinton in elderly patients with the syndrome of mild cognitive impairment. Treatment of neurological and psychiatric diseases. 2010; 110: 62.
-
(2010)
Treatment of neurological and psychiatric diseases
, vol.110
, pp. 62
-
-
Gavrilova, S.I.1
Kolykhalov, I.V.2
Fedorova, Y.B.3
-
67
-
-
58149159907
-
Dysfunction of the ubiquitin-proteasome system in multiple disease conditions: therapeutic approaches
-
Paul S. Dysfunction of the ubiquitin-proteasome system in multiple disease conditions: therapeutic approaches. BioEssays. 2008; 30: 1172–84.
-
(2008)
BioEssays
, vol.30
, pp. 1172-1184
-
-
Paul, S.1
-
68
-
-
77958566761
-
Phenothiazine-mediated rescue of cognition in tau transgenic mice requires neuroprotection and reduced soluble tau burden
-
O'Leary JC, Li Q, Marinec P, et al. Phenothiazine-mediated rescue of cognition in tau transgenic mice requires neuroprotection and reduced soluble tau burden. Mol Neurodegener. 2010; 5: article 45.
-
(2010)
Mol Neurodegener
, vol.5
, pp. 45
-
-
O'Leary, J.C.1
Li, Q.2
Marinec, P.3
-
69
-
-
34547126694
-
Novel therapeutic strategies for the treatment of protein-misfolding diseases
-
Rochet JC. Novel therapeutic strategies for the treatment of protein-misfolding diseases. Expert Rev Mol Med. 2007; 9: 1–34.
-
(2007)
Expert Rev Mol Med
, vol.9
, pp. 1-34
-
-
Rochet, J.C.1
-
70
-
-
3142514201
-
Protein aggregation and neurodegenerative disease
-
Ross C, Poirier M. Protein aggregation and neurodegenerative disease. Nature Med. 2004; 10: S10–7.
-
(2004)
Nature Med
, vol.10
, pp. S10-S17
-
-
Ross, C.1
Poirier, M.2
-
71
-
-
27744451306
-
Ubiquitin-proteasome pathway components as therapeutic targets for CNS maladies
-
Upadhya SC, Hegde AN. Ubiquitin-proteasome pathway components as therapeutic targets for CNS maladies. Curr Pharm Des. 2005; 11: 3807–28.
-
(2005)
Curr Pharm Des
, vol.11
, pp. 3807-3828
-
-
Upadhya, S.C.1
Hegde, A.N.2
-
72
-
-
84929051777
-
Potential therapeutic strategies for Alzheimer's disease targeting or beyond β-amyloid: insights from clinical trials
-
Qiutian J, Yulin D, Hong Q. Potential therapeutic strategies for Alzheimer's disease targeting or beyond β-amyloid: insights from clinical trials. BioMed Research International. 2014; 2014: 22.
-
(2014)
BioMed Research International
, vol.2014
, pp. 22
-
-
Qiutian, J.1
Yulin, D.2
Hong, Q.3
-
73
-
-
77956253706
-
Controlling amyloid-beta peptide (1-42) oligomerization and toxicity by fluorinated nanoparticles
-
Saraiva A, Cardoso I, Pereira MC, et al. Controlling amyloid-beta peptide (1-42) oligomerization and toxicity by fluorinated nanoparticles. ChemBioChem. 2010; 11: 1905–13.
-
(2010)
ChemBioChem
, vol.11
, pp. 1905-1913
-
-
Saraiva, A.1
Cardoso, I.2
Pereira, M.C.3
-
74
-
-
84878816554
-
Treatment with bexarotene, a compound that increases apolipoprotein-E, provides no cognitive benefit in mutant APP/PS1 mice
-
Katherine DL, Kebreten FM, Dexter LL, et al. Treatment with bexarotene, a compound that increases apolipoprotein-E, provides no cognitive benefit in mutant APP/PS1 mice. Mol Neurodegener. 2013; 8: 18.
-
(2013)
Mol Neurodegener
, vol.8
, pp. 18
-
-
Katherine, D.L.1
Kebreten, F.M.2
Dexter, L.L.3
-
75
-
-
80054891306
-
Aβ-degrading enzymes: potential for treatment of Alzheimer disease
-
Miners JS, Barua N, Kehoe PG, et al. Aβ-degrading enzymes: potential for treatment of Alzheimer disease. J Neuropathol Exp Neurol. 2011; 70: 944–59.
-
(2011)
J Neuropathol Exp Neurol
, vol.70
, pp. 944-959
-
-
Miners, J.S.1
Barua, N.2
Kehoe, P.G.3
-
76
-
-
84918591171
-
A review on Alzheimer's disease pathophysiology and its management: an update
-
Kumar A, Singh A, Ekavali. A review on Alzheimer's disease pathophysiology and its management: an update. Pharmacol Rep. 2015; 67: 195–203.
-
(2015)
Pharmacol Rep
, vol.67
, pp. 195-203
-
-
Kumar, A.1
Singh, A.2
Ekavali3
-
77
-
-
33646364811
-
Cerebrolysin decreases amyloid-b production by regulating amyloid protein precursor maturation in a transgenic model of Alzheimer's disease
-
Edward R, Magdalena T, Michael M, et al. Cerebrolysin decreases amyloid-b production by regulating amyloid protein precursor maturation in a transgenic model of Alzheimer's disease. J Neurosci Res. 2006; 83: 1252–61.
-
(2006)
J Neurosci Res
, vol.83
, pp. 1252-1261
-
-
Edward, R.1
Magdalena, T.2
Michael, M.3
-
78
-
-
84885713704
-
Current and emerging therapies for Alzheimer's disease
-
Nygaard HB. Current and emerging therapies for Alzheimer's disease. Clin Ther. 2013; 35: 1480–9.
-
(2013)
Clin Ther
, vol.35
, pp. 1480-1489
-
-
Nygaard, H.B.1
-
79
-
-
6044271376
-
Ubistatins inhibit proteasome-dependent degradation by binding the ubiquitin chain
-
Verma R, Peters NR, D'Onofrio M, et al. Ubistatins inhibit proteasome-dependent degradation by binding the ubiquitin chain. Science. 2004; 306: 117–20.
-
(2004)
Science
, vol.306
, pp. 117-120
-
-
Verma, R.1
Peters, N.R.2
D'Onofrio, M.3
-
80
-
-
84891864176
-
Rapamycin, autophagy, and Alzheimer's disease
-
Cai Z, Yan LJ. Rapamycin, autophagy, and Alzheimer's disease. J Biochem Pharmacol Res. 2013; 1: 84–90.
-
(2013)
J Biochem Pharmacol Res
, vol.1
, pp. 84-90
-
-
Cai, Z.1
Yan, L.J.2
-
81
-
-
0035078189
-
The neuronal endosomal-lysosomal system in Alzheimer's disease
-
Nixon RA, Mathews PM, Cataldo AM. The neuronal endosomal-lysosomal system in Alzheimer's disease. J Alzheimers Dis. 2001; 3: 97–107.
-
(2001)
J Alzheimers Dis
, vol.3
, pp. 97-107
-
-
Nixon, R.A.1
Mathews, P.M.2
Cataldo, A.M.3
-
82
-
-
33745862719
-
Potential compensatory responses through autophagic/lysosomal pathways in neurodegenerative diseases
-
Butler D, Nixon RA, Bahr BA. Potential compensatory responses through autophagic/lysosomal pathways in neurodegenerative diseases. Autophagy. 2006; 2: 234–7.
-
(2006)
Autophagy
, vol.2
, pp. 234-237
-
-
Butler, D.1
Nixon, R.A.2
Bahr, B.A.3
-
83
-
-
78650716872
-
Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits
-
Yang D-S, Stavrides P, Mohan PS, et al. Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits. Brain. 2011; 134: 258–77.
-
(2011)
Brain
, vol.134
, pp. 258-277
-
-
Yang, D.-S.1
Stavrides, P.2
Mohan, P.S.3
-
84
-
-
84865060475
-
Crosstalk between the ubiquitin–proteasome system and autophagy in a human cellular model of Alzheimer's disease
-
Cecarini V, Bonfili L, Cuccioloni M, et al. Crosstalk between the ubiquitin–proteasome system and autophagy in a human cellular model of Alzheimer's disease. Biochim Biophys Acta. 2012; 1822: 1741–51.
-
(2012)
Biochim Biophys Acta
, vol.1822
, pp. 1741-1751
-
-
Cecarini, V.1
Bonfili, L.2
Cuccioloni, M.3
-
85
-
-
84864318274
-
Beyond amyloid: the future of therapeutics for Alzheimer's disease
-
Lane RF, Shineman DW, Steele JW, et al. Beyond amyloid: the future of therapeutics for Alzheimer's disease. Adv Pharmacol. 2012; 64: 213–71.
-
(2012)
Adv Pharmacol
, vol.64
, pp. 213-271
-
-
Lane, R.F.1
Shineman, D.W.2
Steele, J.W.3
-
86
-
-
49049096562
-
Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease
-
Boland B, Kumar A, Lee S, et al. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease. J Neurosci. 2008; 28: 6926–37.
-
(2008)
J Neurosci
, vol.28
, pp. 6926-6937
-
-
Boland, B.1
Kumar, A.2
Lee, S.3
-
87
-
-
62949091373
-
Autophagy: a lysosomal degradation pathway with a central role in health and disease
-
Eskelinen E-L, Saftig P. Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochim Biophys Acta. 2009; 1793: 664–73.
-
(2009)
Biochim Biophys Acta
, vol.1793
, pp. 664-673
-
-
Eskelinen, E.-L.1
Saftig, P.2
-
88
-
-
38349046973
-
Autophagy, amyloidogenesis and Alzheimer disease
-
Nixon RA. Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci. 2007; 120: 4081–91.
-
(2007)
J Cell Sci
, vol.120
, pp. 4081-4091
-
-
Nixon, R.A.1
-
89
-
-
84907051284
-
Targeting Hsp90 and its co-chaperones to treat Alzheimer's disease
-
Blair LJ, Sabbagh JJ, Dickey CA. Targeting Hsp90 and its co-chaperones to treat Alzheimer's disease. Expert Opin Ther Tar. 2014; 18: 1219–32.
-
(2014)
Expert Opin Ther Tar
, vol.18
, pp. 1219-1232
-
-
Blair, L.J.1
Sabbagh, J.J.2
Dickey, C.A.3
-
90
-
-
84908323870
-
Heat shock protein 90 in Alzheimer's disease
-
Ou J-R, Tan M-S, Xie A-M, et al. Heat shock protein 90 in Alzheimer's disease. Biomed Res Int. 2014; 2014: 1–7.
-
(2014)
Biomed Res Int
, vol.2014
, pp. 1-7
-
-
Ou, J.-R.1
Tan, M.-S.2
Xie, A.-M.3
-
91
-
-
78649767505
-
Hsp90 regulates tau pathology through co-chaperone complexes in Alzheimer's disease
-
Salminen A, Ojala J, Kaarniranta K, et al. Hsp90 regulates tau pathology through co-chaperone complexes in Alzheimer's disease. Prog Neurobiol. 2011; 93: 99–110.
-
(2011)
Prog Neurobiol
, vol.93
, pp. 99-110
-
-
Salminen, A.1
Ojala, J.2
Kaarniranta, K.3
-
93
-
-
36248968668
-
Heat shock proteins and amateur chaperones in amyloid-Beta accumulation and clearance in Alzheimer's disease
-
Wilhelmus MM, De Waal RM, Verbeek MM. Heat shock proteins and amateur chaperones in amyloid-Beta accumulation and clearance in Alzheimer's disease. Mol Neurobiol. 2007; 35: 203–16.
-
(2007)
Mol Neurobiol
, vol.35
, pp. 203-216
-
-
Wilhelmus, M.M.1
De Waal, R.M.2
Verbeek, M.M.3
-
94
-
-
77953416860
-
Hsp70 ATPase modulators as therapeutics for Alzheimer's and other neurodegenerative diseases
-
Jinwal UK, Koren J, O'Leary JC, et al. Hsp70 ATPase modulators as therapeutics for Alzheimer's and other neurodegenerative diseases. Mol Cell Pharmacol. 2010; 2: 43–6.
-
(2010)
Mol Cell Pharmacol
, vol.2
, pp. 43-46
-
-
Jinwal, U.K.1
Koren, J.2
O'Leary, J.C.3
-
95
-
-
47549104977
-
Quality control of the proteins associated with neurodegenerative diseases
-
Gao X, Hu H. Quality control of the proteins associated with neurodegenerative diseases. Acta Biochim Biophys Sin (Shanghai). 2008; 40: 612–8.
-
(2008)
Acta Biochim Biophys Sin (Shanghai)
, vol.40
, pp. 612-618
-
-
Gao, X.1
Hu, H.2
-
96
-
-
84889593661
-
Therapeutic effect of exogenous hsp70 in mouse models of Alzheimer's disease
-
Bobkova NV, Garbuz DG, Nesterova I, et al. Therapeutic effect of exogenous hsp70 in mouse models of Alzheimer's disease. J Alzheimers Dis. 2014; 38: 425–35.
-
(2014)
J Alzheimers Dis
, vol.38
, pp. 425-435
-
-
Bobkova, N.V.1
Garbuz, D.G.2
Nesterova, I.3
-
97
-
-
84911191807
-
Molecular chaperone dysfunction in neurodegenerative diseases and effects of curcumin
-
Maiti P, Manna J, Veleri S, et al. Molecular chaperone dysfunction in neurodegenerative diseases and effects of curcumin. Biomed Res Int. 2014; 2014: 495091.
-
(2014)
Biomed Res Int
, vol.2014
, pp. 495091
-
-
Maiti, P.1
Manna, J.2
Veleri, S.3
-
98
-
-
42249112650
-
The effect of curcumin (turmeric) on Alzheimer's disease: an overview
-
Mishra S, Palanivelu K. The effect of curcumin (turmeric) on Alzheimer's disease: an overview. Ann Indian Acad Neurol. 2008; 11: 13.
-
(2008)
Ann Indian Acad Neurol
, vol.11
, pp. 13
-
-
Mishra, S.1
Palanivelu, K.2
-
99
-
-
65649110502
-
BAG-1M is up-regulated in hippocampus of Alzheimers disease patients and associates with tau and APP proteins
-
Elliott E, Laufer O, Ginzburg I. BAG-1M is up-regulated in hippocampus of Alzheimers disease patients and associates with tau and APP proteins. J Neurochem. 2009; 109: 1168–78.
-
(2009)
J Neurochem
, vol.109
, pp. 1168-1178
-
-
Elliott, E.1
Laufer, O.2
Ginzburg, I.3
-
100
-
-
37549025063
-
BAG-1 associates with Hsc70· Tau complex and regulates the proteasomal degradation of Tau protein
-
Elliott E, Tsvetkov P, Ginzburg I. BAG-1 associates with Hsc70· Tau complex and regulates the proteasomal degradation of Tau protein. J Biol Chem. 2007; 282: 37276–84.
-
(2007)
J Biol Chem
, vol.282
, pp. 37276-37284
-
-
Elliott, E.1
Tsvetkov, P.2
Ginzburg, I.3
-
101
-
-
84944622121
-
Chaperone-dependent neurodegeneration: a molecular perspective on therapeutic intervention
-
007
-
Carman A, Kishinevsky S, Koren J 3rd, et al. Chaperone-dependent neurodegeneration: a molecular perspective on therapeutic intervention. J Alzheimers Dis Parkinsonism. 2013; 2013: (suppl10). pii:007.
-
(2013)
J Alzheimers Dis Parkinsonism
, vol.2013
-
-
Carman, A.1
Kishinevsky, S.2
Koren, J.3
-
102
-
-
79955759163
-
The Hsp90 kinase co-chaperone Cdc37 regulates tau stability and phosphorylation dynamics
-
Jinwal UK, Trotter JH, Abisambra JF, et al. The Hsp90 kinase co-chaperone Cdc37 regulates tau stability and phosphorylation dynamics. J Biol Chem. 2011; 286: 16976–83.
-
(2011)
J Biol Chem
, vol.286
, pp. 16976-16983
-
-
Jinwal, U.K.1
Trotter, J.H.2
Abisambra, J.F.3
-
104
-
-
67349281559
-
Neurofibrillary and neurodegenerative pathology in APP-transgenic mice injected with AAV2-mutant TAU: neuroprotective effects of Cerebrolysin
-
Ubhi K, Rockenstein E, Doppler E, et al. Neurofibrillary and neurodegenerative pathology in APP-transgenic mice injected with AAV2-mutant TAU: neuroprotective effects of Cerebrolysin. Acta Neuropathol. 2009; 117: 699–712.
-
(2009)
Acta Neuropathol
, vol.117
, pp. 699-712
-
-
Ubhi, K.1
Rockenstein, E.2
Doppler, E.3
-
105
-
-
84908463972
-
Genetics of Alzheimer's disease
-
Chouraki V, Seshadri S. Genetics of Alzheimer's disease. Adv Genet. 2014; 87: 245–94.
-
(2014)
Adv Genet
, vol.87
, pp. 245-294
-
-
Chouraki, V.1
Seshadri, S.2
-
106
-
-
0031875042
-
The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin
-
Schulte TW, Neckers LM. The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemoth Pharm. 1998; 42: 273–9.
-
(1998)
Cancer Chemoth Pharm
, vol.42
, pp. 273-279
-
-
Schulte, T.W.1
Neckers, L.M.2
-
107
-
-
34547183507
-
Roles of heat-shock protein 90 in maintaining and facilitating the neurodegenerative phenotype in tauopathies
-
Luo W, Dou F, Rodina A, et al. Roles of heat-shock protein 90 in maintaining and facilitating the neurodegenerative phenotype in tauopathies. PNAS. 2007; 104: 9511–6.
-
(2007)
PNAS
, vol.104
, pp. 9511-9516
-
-
Luo, W.1
Dou, F.2
Rodina, A.3
-
108
-
-
84885122581
-
Brain site-specific proteome changes in aging-related dementia
-
Manavalan A, Mishra M, Feng L, et al. Brain site-specific proteome changes in aging-related dementia. Exp Mol Med. 2013; 45: e39.
-
(2013)
Exp Mol Med
, vol.45
-
-
Manavalan, A.1
Mishra, M.2
Feng, L.3
-
109
-
-
84857920499
-
Control of BACE1 degradation and APP processing by ubiquitin carboxyl-terminal hydrolase L1
-
Zhang M, Deng Y, Luo Y, et al. Control of BACE1 degradation and APP processing by ubiquitin carboxyl-terminal hydrolase L1. J Neurochem. 2012; 120: 1129–38.
-
(2012)
J Neurochem
, vol.120
, pp. 1129-1138
-
-
Zhang, M.1
Deng, Y.2
Luo, Y.3
-
110
-
-
42349089604
-
The ubiquitin-proteasome system in Alzheimer's disease
-
Oddo S. The ubiquitin-proteasome system in Alzheimer's disease. J Cell Mol Med. 2008; 12: 363–73.
-
(2008)
J Cell Mol Med
, vol.12
, pp. 363-373
-
-
Oddo, S.1
-
111
-
-
84866478442
-
The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system
-
Tai H-C, Serrano-Pozo A, Hashimoto T, et al. The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system. Am J Pathol. 2012; 181: 1426–35.
-
(2012)
Am J Pathol
, vol.181
, pp. 1426-1435
-
-
Tai, H.-C.1
Serrano-Pozo, A.2
Hashimoto, T.3
-
112
-
-
1642289188
-
Role of tau protein in both physiological and pathological conditions
-
Avila J, Lucas JJ, Perez M, et al. Role of tau protein in both physiological and pathological conditions. Physiol Rev. 2004; 84: 361–84.
-
(2004)
Physiol Rev
, vol.84
, pp. 361-384
-
-
Avila, J.1
Lucas, J.J.2
Perez, M.3
-
113
-
-
33745959291
-
Deletion of the ubiquitin ligase CHIP leads to the accumulation, but not the aggregation, of both endogenous phospho-and caspase-3-cleaved tau species
-
Dickey CA, Yue M, Lin W-L, et al. Deletion of the ubiquitin ligase CHIP leads to the accumulation, but not the aggregation, of both endogenous phospho-and caspase-3-cleaved tau species. J Neurosci. 2006; 26: 6985–96.
-
(2006)
J Neurosci
, vol.26
, pp. 6985-6996
-
-
Dickey, C.A.1
Yue, M.2
Lin, W.-L.3
-
114
-
-
24144440041
-
In vivo evidence of CHIP up-regulation attenuating tau aggregation
-
Sahara N, Murayama M, Mizoroki T, et al. In vivo evidence of CHIP up-regulation attenuating tau aggregation. J Neurochem. 2005; 94: 1254–63.
-
(2005)
J Neurochem
, vol.94
, pp. 1254-1263
-
-
Sahara, N.1
Murayama, M.2
Mizoroki, T.3
-
115
-
-
84901766047
-
Acetylation: a new key to unlock tau's role in neurodegeneration
-
Casey C, Jeannette NS, Yari C, et al. Acetylation: a new key to unlock tau's role in neurodegeneration. Alzheimers Res Ther. 2014; 6: 29.
-
(2014)
Alzheimers Res Ther
, vol.6
, pp. 29
-
-
Casey, C.1
Jeannette, N.S.2
Yari, C.3
-
116
-
-
79959370222
-
Disease-modifying treatments for Alzheimer's disease
-
Galimberti D, Scarpini E. Disease-modifying treatments for Alzheimer's disease. Ther Adv Neurol Disord. 2011; 4: 203–16.
-
(2011)
Ther Adv Neurol Disord
, vol.4
, pp. 203-216
-
-
Galimberti, D.1
Scarpini, E.2
-
117
-
-
0037383052
-
Relationship between β-amyloid degradation and the 26S proteasome in neural cells
-
Salon ML, Pasquini L, Moreno MB, et al. Relationship between β-amyloid degradation and the 26S proteasome in neural cells. Exp Neurol. 2003; 180: 131–43.
-
(2003)
Exp Neurol
, vol.180
, pp. 131-143
-
-
Salon, M.L.1
Pasquini, L.2
Moreno, M.B.3
-
118
-
-
0141638441
-
Essential role of E2-25K/Hip-2 in mediating amyloid-β neurotoxicity
-
Song S, Kim S-Y, Hong Y-M, et al. Essential role of E2-25K/Hip-2 in mediating amyloid-β neurotoxicity. Mol Cell. 2003; 12: 553–63.
-
(2003)
Mol Cell
, vol.12
, pp. 553-563
-
-
Song, S.1
Kim, S.-Y.2
Hong, Y.-M.3
-
119
-
-
0035203294
-
Mutant ubiquitin expressed in Alzheimer's disease causes neuronal death1
-
De Vrij FM, Sluijs JA, Gregori L, et al. Mutant ubiquitin expressed in Alzheimer's disease causes neuronal death1. FASEB J. 2001; 15: 2680–8.
-
(2001)
FASEB J
, vol.15
, pp. 2680-2688
-
-
De Vrij, F.M.1
Sluijs, J.A.2
Gregori, L.3
-
120
-
-
78650034178
-
Ubiquitin/proteasome pathway impairment in neurodegeneration: therapeutic implications
-
Huang Q, Figueiredo-Pereira ME. Ubiquitin/proteasome pathway impairment in neurodegeneration: therapeutic implications. Apoptosis. 2010; 15: 1292–311.
-
(2010)
Apoptosis
, vol.15
, pp. 1292-1311
-
-
Huang, Q.1
Figueiredo-Pereira, M.E.2
-
121
-
-
34548738343
-
Mutant ubiquitin found in Alzheimer's disease causes neuritic beading of mitochondria in association with neuronal degeneration
-
Tan Z, Sun X, F-y Hou, et al. Mutant ubiquitin found in Alzheimer's disease causes neuritic beading of mitochondria in association with neuronal degeneration. Cell Death Differ. 2007; 14: 1721–32.
-
(2007)
Cell Death Differ
, vol.14
, pp. 1721-1732
-
-
Tan, Z.1
Sun, X.2
F-y, H.3
-
123
-
-
27644522515
-
Amyloid peptide attenuates the proteasome activity in neuronal cells
-
Oh S, Hong HS, Hwang E, et al. Amyloid peptide attenuates the proteasome activity in neuronal cells. Mech Ageing Dev. 2005; 126: 1292–9.
-
(2005)
Mech Ageing Dev
, vol.126
, pp. 1292-1299
-
-
Oh, S.1
Hong, H.S.2
Hwang, E.3
-
124
-
-
77953518555
-
Alzheimer's disease: clinical trials and drug development
-
Mangialasche F, Solomon A, Winblad B, et al. Alzheimer's disease: clinical trials and drug development. Lancet Neurol. 2010; 9: 702–16.
-
(2010)
Lancet Neurol
, vol.9
, pp. 702-716
-
-
Mangialasche, F.1
Solomon, A.2
Winblad, B.3
-
125
-
-
84909633352
-
Nutrition and prevention of Alzheimer's dementia
-
Swaminathan A, Jicha GA. Nutrition and prevention of Alzheimer's dementia. Front Aging Neurosci. 2014; 6: 282.
-
(2014)
Front Aging Neurosci
, vol.6
, pp. 282
-
-
Swaminathan, A.1
Jicha, G.A.2
-
126
-
-
84908513705
-
Amyloid-beta (Aβ (1-42))-induced paralysis in Caenorhabditis elegans is inhibited by the polyphenol quercetin through activation of protein degradation pathways
-
Regitz C, Dubling LM, Wenzel U. Amyloid-beta (Aβ (1-42))-induced paralysis in Caenorhabditis elegans is inhibited by the polyphenol quercetin through activation of protein degradation pathways. Mol Nutr Food Res. 2014; 58: 1931–40.
-
(2014)
Mol Nutr Food Res
, vol.58
, pp. 1931-1940
-
-
Regitz, C.1
Dubling, L.M.2
Wenzel, U.3
-
127
-
-
79956286784
-
Stem cell therapy for Alzheimer's disease
-
Abdel-Salam OM. Stem cell therapy for Alzheimer's disease. CNS Neurol Disord Drug Targets. 2011; 10: 459–85.
-
(2011)
CNS Neurol Disord Drug Targets
, vol.10
, pp. 459-485
-
-
Abdel-Salam, O.M.1
-
128
-
-
55549137044
-
Targeted intracellular protein degradation induced by a small molecule: en route to chemical proteomics
-
Schneekloth AR, Pucheault M, Tae HS, et al. Targeted intracellular protein degradation induced by a small molecule: en route to chemical proteomics. Bioorg Med Chem Lett. 2008; 18: 5904–8.
-
(2008)
Bioorg Med Chem Lett
, vol.18
, pp. 5904-5908
-
-
Schneekloth, A.R.1
Pucheault, M.2
Tae, H.S.3
-
129
-
-
27844497059
-
Resveratrol promotes clearance of Alzheimer's disease amyloid-β peptides
-
Marambaud P, Zhao H, Davies P. Resveratrol promotes clearance of Alzheimer's disease amyloid-β peptides. J Biol Chem. 2005; 280: 37377–82.
-
(2005)
J Biol Chem
, vol.280
, pp. 37377-37382
-
-
Marambaud, P.1
Zhao, H.2
Davies, P.3
-
130
-
-
34948849213
-
Activation and inhibition of the proteasome by betulinic acid and its derivatives
-
Huang L, Ho P, Chen CH. Activation and inhibition of the proteasome by betulinic acid and its derivatives. FEBS Lett. 2007; 581: 4955–9.
-
(2007)
FEBS Lett
, vol.581
, pp. 4955-4959
-
-
Huang, L.1
Ho, P.2
Chen, C.H.3
-
131
-
-
33748439489
-
An arsenite-inducible 19S regulatory particle-associated protein adapts proteasomes to proteotoxicity
-
Stanhill A, Haynes CM, Zhang Y, et al. An arsenite-inducible 19S regulatory particle-associated protein adapts proteasomes to proteotoxicity. Mol Cell. 2006; 23: 875–85.
-
(2006)
Mol Cell
, vol.23
, pp. 875-885
-
-
Stanhill, A.1
Haynes, C.M.2
Zhang, Y.3
-
132
-
-
0031026231
-
Binding of amyloid beta protein to the 20 S proteasome
-
Gregori L, Hainfeld JF, Simon MN, et al. Binding of amyloid beta protein to the 20 S proteasome. J Biol Chem. 1997; 272: 58–62.
-
(1997)
J Biol Chem
, vol.272
, pp. 58-62
-
-
Gregori, L.1
Hainfeld, J.F.2
Simon, M.N.3
-
133
-
-
51449096696
-
Abeta inhibits the proteasome and enhances amyloid and tau accumulation
-
Tseng BP, Green KN, Chan JL, et al. Abeta inhibits the proteasome and enhances amyloid and tau accumulation. Neurobiol Aging. 2008; 29: 1607–18.
-
(2008)
Neurobiol Aging
, vol.29
, pp. 1607-1618
-
-
Tseng, B.P.1
Green, K.N.2
Chan, J.L.3
-
134
-
-
84864389698
-
Degradation of tau protein by autophagy and proteasomal pathways
-
Wang Y, Mandelkow E. Degradation of tau protein by autophagy and proteasomal pathways. Biochem Soc Trans. 2012; 40: 644–52.
-
(2012)
Biochem Soc Trans
, vol.40
, pp. 644-652
-
-
Wang, Y.1
Mandelkow, E.2
-
135
-
-
84889998868
-
Peptides that activate the 20S proteasome by gate opening increased oxidized protein removal and reduced protein aggregation
-
Dal Vechio FH, Cerqueira F, Augusto O, et al. Peptides that activate the 20S proteasome by gate opening increased oxidized protein removal and reduced protein aggregation. Free Radic Biol Med. 2014; 67: 304–13.
-
(2014)
Free Radic Biol Med
, vol.67
, pp. 304-313
-
-
Dal Vechio, F.H.1
Cerqueira, F.2
Augusto, O.3
-
136
-
-
77956527159
-
Enhancement of proteasome activity by a small-molecule inhibitor of USP14
-
Lee BH, Lee MJ, Park S, et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature. 2010; 467: 179–84.
-
(2010)
Nature
, vol.467
, pp. 179-184
-
-
Lee, B.H.1
Lee, M.J.2
Park, S.3
|