메뉴 건너뛰기




Volumn 38, Issue 2, 2013, Pages 103-110

Functions of the 19S complex in proteasomal degradation

Author keywords

Deubiquitylating enzyme; Deubiquitylation and protein degradation; Polyubiquitin chain; Proteasome; Ubiquitin

Indexed keywords

PROTEASOME;

EID: 84872773589     PISSN: 09680004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibs.2012.11.009     Document Type: Review
Times cited : (58)

References (80)
  • 1
    • 65649115267 scopus 로고    scopus 로고
    • Recognition and processing of ubiquitin-protein conjugates by the proteasome
    • Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 2009, 78:477-513.
    • (2009) Annu. Rev. Biochem. , vol.78 , pp. 477-513
    • Finley, D.1
  • 2
    • 0036083396 scopus 로고    scopus 로고
    • The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction
    • Glickman M.H., Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 2002, 82:373-428.
    • (2002) Physiol. Rev. , vol.82 , pp. 373-428
    • Glickman, M.H.1    Ciechanover, A.2
  • 3
    • 84856976866 scopus 로고    scopus 로고
    • Complete subunit architecture of the proteasome regulatory particle
    • Lander G.C., et al. Complete subunit architecture of the proteasome regulatory particle. Nature 2012, 482:186-191.
    • (2012) Nature , vol.482 , pp. 186-191
    • Lander, G.C.1
  • 4
    • 84857134729 scopus 로고    scopus 로고
    • Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach
    • Lasker K., et al. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:1380-1387.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 1380-1387
    • Lasker, K.1
  • 5
    • 84859702750 scopus 로고    scopus 로고
    • Molecular model of the human 26S proteasome
    • da Fonseca P.C., et al. Molecular model of the human 26S proteasome. Mol. Cell 2012, 46:54-66.
    • (2012) Mol. Cell , vol.46 , pp. 54-66
    • da Fonseca, P.C.1
  • 6
    • 84866269021 scopus 로고    scopus 로고
    • Near-atomic resolution structural model of the yeast 26S proteasome
    • Beck F., et al. Near-atomic resolution structural model of the yeast 26S proteasome. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:14870-14875.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 14870-14875
    • Beck, F.1
  • 7
    • 0030897031 scopus 로고    scopus 로고
    • Structure of 20S proteasome from yeast at 2.4 A resolution
    • Groll M., et al. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 1997, 386:463-471.
    • (1997) Nature , vol.386 , pp. 463-471
    • Groll, M.1
  • 8
    • 65649091692 scopus 로고    scopus 로고
    • Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii
    • Zhang F., et al. Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol. Cell 2009, 34:473-484.
    • (2009) Mol. Cell , vol.34 , pp. 473-484
    • Zhang, F.1
  • 9
    • 0034597824 scopus 로고    scopus 로고
    • Structural basis for the activation of 20S proteasomes by 11S regulators
    • Whitby F.G., et al. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 2000, 408:115-120.
    • (2000) Nature , vol.408 , pp. 115-120
    • Whitby, F.G.1
  • 10
    • 0028087582 scopus 로고
    • PA700, an ATP-dependent activator of the 20 S proteasome, is an ATPase containing multiple members of a nucleotide-binding protein family
    • DeMartino G.N., et al. PA700, an ATP-dependent activator of the 20 S proteasome, is an ATPase containing multiple members of a nucleotide-binding protein family. J. Biol. Chem. 1994, 269:20878-20884.
    • (1994) J. Biol. Chem. , vol.269 , pp. 20878-20884
    • DeMartino, G.N.1
  • 11
    • 79951707743 scopus 로고    scopus 로고
    • ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle
    • Smith D.M., et al. ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle. Cell 2011, 144:526-538.
    • (2011) Cell , vol.144 , pp. 526-538
    • Smith, D.M.1
  • 12
    • 33749069075 scopus 로고    scopus 로고
    • ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome
    • Liu C.W., et al. ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome. Mol. Cell 2006, 24:39-50.
    • (2006) Mol. Cell , vol.24 , pp. 39-50
    • Liu, C.W.1
  • 13
    • 44349116590 scopus 로고    scopus 로고
    • Proteasome subunit Rpn13 is a novel ubiquitin receptor
    • Husnjak K., et al. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 2008, 453:481-488.
    • (2008) Nature , vol.453 , pp. 481-488
    • Husnjak, K.1
  • 14
    • 0028235965 scopus 로고
    • A 26 S protease subunit that binds ubiquitin conjugates
    • Deveraux Q., et al. A 26 S protease subunit that binds ubiquitin conjugates. J. Biol. Chem. 1994, 269:7059-7061.
    • (1994) J. Biol. Chem. , vol.269 , pp. 7059-7061
    • Deveraux, Q.1
  • 15
    • 0032489524 scopus 로고    scopus 로고
    • Characterization of two polyubiquitin binding sites in the 26 S protease subunit 5a
    • Young P., et al. Characterization of two polyubiquitin binding sites in the 26 S protease subunit 5a. J. Biol. Chem. 1998, 273:5461-5467.
    • (1998) J. Biol. Chem. , vol.273 , pp. 5461-5467
    • Young, P.1
  • 16
    • 17144417404 scopus 로고    scopus 로고
    • Structure of S5a bound to monoubiquitin provides a model for polyubiquitin recognition
    • Wang Q., et al. Structure of S5a bound to monoubiquitin provides a model for polyubiquitin recognition. J. Mol. Biol. 2005, 348:727-739.
    • (2005) J. Mol. Biol. , vol.348 , pp. 727-739
    • Wang, Q.1
  • 17
    • 44349094727 scopus 로고    scopus 로고
    • Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction
    • Schreiner P., et al. Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature 2008, 453:548-552.
    • (2008) Nature , vol.453 , pp. 548-552
    • Schreiner, P.1
  • 18
    • 0033791447 scopus 로고    scopus 로고
    • Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes
    • Verma R., et al. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell 2000, 11:3425-3439.
    • (2000) Mol. Biol. Cell , vol.11 , pp. 3425-3439
    • Verma, R.1
  • 19
    • 3042799223 scopus 로고    scopus 로고
    • Sem1p is a novel subunit of the 26 S proteasome from Saccharomyces cerevisiae
    • Sone T., et al. Sem1p is a novel subunit of the 26 S proteasome from Saccharomyces cerevisiae. J. Biol. Chem. 2004, 279:28807-28816.
    • (2004) J. Biol. Chem. , vol.279 , pp. 28807-28816
    • Sone, T.1
  • 20
    • 33749348820 scopus 로고    scopus 로고
    • A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes
    • Hamazaki J., et al. A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes. EMBO J. 2006, 25:4524-4536.
    • (2006) EMBO J. , vol.25 , pp. 4524-4536
    • Hamazaki, J.1
  • 21
    • 33745936981 scopus 로고    scopus 로고
    • Adrm1, a putative cell adhesion regulating protein, is a novel proteasome-associated factor
    • Jorgensen J.P., et al. Adrm1, a putative cell adhesion regulating protein, is a novel proteasome-associated factor. J. Mol. Biol. 2006, 360:1043-1052.
    • (2006) J. Mol. Biol. , vol.360 , pp. 1043-1052
    • Jorgensen, J.P.1
  • 22
    • 33845713194 scopus 로고    scopus 로고
    • HRpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37
    • Qiu X.B., et al. hRpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37. EMBO J. 2006, 25:5742-5753.
    • (2006) EMBO J. , vol.25 , pp. 5742-5753
    • Qiu, X.B.1
  • 23
    • 33748188085 scopus 로고    scopus 로고
    • Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1
    • Yao T., et al. Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat. Cell Biol. 2006, 8:994-1002.
    • (2006) Nat. Cell Biol. , vol.8 , pp. 994-1002
    • Yao, T.1
  • 24
    • 34748859663 scopus 로고    scopus 로고
    • Rpn10-mediated degradation of ubiquitinated proteins is essential for mouse development
    • Hamazaki J., et al. Rpn10-mediated degradation of ubiquitinated proteins is essential for mouse development. Mol. Cell. Biol. 2007, 27:6629-6638.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 6629-6638
    • Hamazaki, J.1
  • 25
    • 77952741384 scopus 로고    scopus 로고
    • Functional differences between two major ubiquitin receptors in the proteasome; S5a and hRpn13
    • Elangovan M., et al. Functional differences between two major ubiquitin receptors in the proteasome; S5a and hRpn13. Biochem. Biophys. Res. Commun. 2010, 396:425-428.
    • (2010) Biochem. Biophys. Res. Commun. , vol.396 , pp. 425-428
    • Elangovan, M.1
  • 26
    • 23144449583 scopus 로고    scopus 로고
    • Delivery of ubiquitinated substrates to protein-unfolding machines
    • Elsasser S., Finley D. Delivery of ubiquitinated substrates to protein-unfolding machines. Nat. Cell Biol. 2005, 7:742-749.
    • (2005) Nat. Cell Biol. , vol.7 , pp. 742-749
    • Elsasser, S.1    Finley, D.2
  • 27
    • 68349135106 scopus 로고    scopus 로고
    • Structure of the s5a:k48-linked diubiquitin complex and its interactions with rpn13
    • Zhang N., et al. Structure of the s5a:k48-linked diubiquitin complex and its interactions with rpn13. Mol. Cell 2009, 35:280-290.
    • (2009) Mol. Cell , vol.35 , pp. 280-290
    • Zhang, N.1
  • 28
    • 0033600798 scopus 로고    scopus 로고
    • Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26 S proteasome
    • Hiyama H., et al. Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26 S proteasome. J. Biol. Chem. 1999, 274:28019-28025.
    • (1999) J. Biol. Chem. , vol.274 , pp. 28019-28025
    • Hiyama, H.1
  • 29
    • 84867398821 scopus 로고    scopus 로고
    • The size of the proteasomal substrate determines whether its degradation will be mediated by mono- or polyubiquitylation
    • Shabek N., et al. The size of the proteasomal substrate determines whether its degradation will be mediated by mono- or polyubiquitylation. Mol. Cell 2012, 48:87-97.
    • (2012) Mol. Cell , vol.48 , pp. 87-97
    • Shabek, N.1
  • 30
    • 79954448311 scopus 로고    scopus 로고
    • Modification by single ubiquitin moieties rather than polyubiquitination is sufficient for proteasomal processing of the p105 NF-κB precursor
    • Kravtsova-Ivantsiv Y., et al. Modification by single ubiquitin moieties rather than polyubiquitination is sufficient for proteasomal processing of the p105 NF-κB precursor. Adv. Exp. Med. Biol. 2011, 691:95-106.
    • (2011) Adv. Exp. Med. Biol. , vol.691 , pp. 95-106
    • Kravtsova-Ivantsiv, Y.1
  • 31
    • 84862776836 scopus 로고    scopus 로고
    • APC/C-mediated multiple monoubiquitylation provides an alternative degradation signal for cyclin B1
    • Dimova N.V., et al. APC/C-mediated multiple monoubiquitylation provides an alternative degradation signal for cyclin B1. Nat. Cell Biol. 2012, 14:168-176.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 168-176
    • Dimova, N.V.1
  • 32
    • 77951534832 scopus 로고    scopus 로고
    • Dependence of phospholipase D1 multi-monoubiquitination on its enzymatic activity and palmitoylation
    • Yin H., et al. Dependence of phospholipase D1 multi-monoubiquitination on its enzymatic activity and palmitoylation. J. Biol. Chem. 2010, 285:13580-13588.
    • (2010) J. Biol. Chem. , vol.285 , pp. 13580-13588
    • Yin, H.1
  • 33
    • 34447523329 scopus 로고    scopus 로고
    • Regulation of Pax3 by proteasomal degradation of monoubiquitinated protein in skeletal muscle progenitors
    • Boutet S.C., et al. Regulation of Pax3 by proteasomal degradation of monoubiquitinated protein in skeletal muscle progenitors. Cell 2007, 130:349-362.
    • (2007) Cell , vol.130 , pp. 349-362
    • Boutet, S.C.1
  • 34
    • 84863115607 scopus 로고    scopus 로고
    • Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy
    • Sakata E., et al. Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:1479-1484.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 1479-1484
    • Sakata, E.1
  • 35
    • 0034602845 scopus 로고    scopus 로고
    • Recognition of the polyubiquitin proteolytic signal
    • Thrower J.S., et al. Recognition of the polyubiquitin proteolytic signal. EMBO J. 2000, 19:94-102.
    • (2000) EMBO J. , vol.19 , pp. 94-102
    • Thrower, J.S.1
  • 36
    • 52249085709 scopus 로고    scopus 로고
    • The unfoldomics decade: an update on intrinsically disordered proteins
    • Dunker A.K., et al. The unfoldomics decade: an update on intrinsically disordered proteins. BMC Genomics 2008, 9(Suppl. 2):S1.
    • (2008) BMC Genomics , vol.9 , Issue.SUPPL. 2
    • Dunker, A.K.1
  • 37
    • 4344559454 scopus 로고    scopus 로고
    • An unstructured initiation site is required for efficient proteasome-mediated degradation
    • Prakash S., et al. An unstructured initiation site is required for efficient proteasome-mediated degradation. Nat. Struct. Mol. Biol. 2004, 11:830-837.
    • (2004) Nat. Struct. Mol. Biol. , vol.11 , pp. 830-837
    • Prakash, S.1
  • 38
    • 77951199144 scopus 로고    scopus 로고
    • Degradation of some polyubiquitinated proteins requires an intrinsic proteasomal binding element in the substrates
    • Zhao M., et al. Degradation of some polyubiquitinated proteins requires an intrinsic proteasomal binding element in the substrates. J. Biol. Chem. 2010, 285:4771-4780.
    • (2010) J. Biol. Chem. , vol.285 , pp. 4771-4780
    • Zhao, M.1
  • 39
    • 78649289427 scopus 로고    scopus 로고
    • ATP-dependent steps in the binding of ubiquitin conjugates to the 26S proteasome that commit to degradation
    • Peth A., et al. ATP-dependent steps in the binding of ubiquitin conjugates to the 26S proteasome that commit to degradation. Mol. Cell 2010, 40:671-681.
    • (2010) Mol. Cell , vol.40 , pp. 671-681
    • Peth, A.1
  • 40
    • 2442645033 scopus 로고    scopus 로고
    • Proteasomes begin ornithine decarboxylase digestion at the C terminus
    • Zhang M., et al. Proteasomes begin ornithine decarboxylase digestion at the C terminus. J. Biol. Chem. 2004, 279:20959-20965.
    • (2004) J. Biol. Chem. , vol.279 , pp. 20959-20965
    • Zhang, M.1
  • 41
    • 79951850741 scopus 로고    scopus 로고
    • Defining the geometry of the two-component proteasome degron
    • Inobe T., et al. Defining the geometry of the two-component proteasome degron. Nat. Chem. Biol. 2011, 7:161-167.
    • (2011) Nat. Chem. Biol. , vol.7 , pp. 161-167
    • Inobe, T.1
  • 42
    • 0036753063 scopus 로고    scopus 로고
    • Multiple associated proteins regulate proteasome structure and function
    • Leggett D.S., et al. Multiple associated proteins regulate proteasome structure and function. Mol. Cell 2002, 10:495-507.
    • (2002) Mol. Cell , vol.10 , pp. 495-507
    • Leggett, D.S.1
  • 43
    • 7944230364 scopus 로고    scopus 로고
    • Uch2/Uch37 is the major deubiquitinating enzyme associated with the 26S proteasome in fission yeast
    • Stone M., et al. Uch2/Uch37 is the major deubiquitinating enzyme associated with the 26S proteasome in fission yeast. J. Mol. Biol. 2004, 344:697-706.
    • (2004) J. Mol. Biol. , vol.344 , pp. 697-706
    • Stone, M.1
  • 44
    • 0037179694 scopus 로고    scopus 로고
    • A cryptic protease couples deubiquitination and degradation by the proteasome
    • Yao T., Cohen R.E. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 2002, 419:403-407.
    • (2002) Nature , vol.419 , pp. 403-407
    • Yao, T.1    Cohen, R.E.2
  • 45
    • 0037131243 scopus 로고    scopus 로고
    • Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome
    • Verma R., et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 2002, 298:611-615.
    • (2002) Science , vol.298 , pp. 611-615
    • Verma, R.1
  • 46
    • 34248350363 scopus 로고    scopus 로고
    • MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpn11 function
    • Maytal-Kivity V., et al. MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpn11 function. BMC Biochem. 2002, 3:28.
    • (2002) BMC Biochem. , vol.3 , pp. 28
    • Maytal-Kivity, V.1
  • 47
    • 0036842130 scopus 로고    scopus 로고
    • Synaptic defects in ataxia mice result from a mutation in Usp14, encoding a ubiquitin-specific protease
    • Wilson S.M., et al. Synaptic defects in ataxia mice result from a mutation in Usp14, encoding a ubiquitin-specific protease. Nat. Genet. 2002, 32:420-425.
    • (2002) Nat. Genet. , vol.32 , pp. 420-425
    • Wilson, S.M.1
  • 48
    • 82555200901 scopus 로고    scopus 로고
    • Ubiquitin homeostasis is critical for synaptic development and function
    • Chen P.C., et al. Ubiquitin homeostasis is critical for synaptic development and function. J. Neurosci. 2011, 31:17505-17513.
    • (2011) J. Neurosci. , vol.31 , pp. 17505-17513
    • Chen, P.C.1
  • 49
    • 33749049581 scopus 로고    scopus 로고
    • Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation
    • Hanna J., et al. Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell 2006, 127:99-111.
    • (2006) Cell , vol.127 , pp. 99-111
    • Hanna, J.1
  • 50
    • 78149423680 scopus 로고    scopus 로고
    • Regulators of the proteasome pathway, Uch37 and Rpn13, play distinct roles in mouse development
    • Al-Shami A., et al. Regulators of the proteasome pathway, Uch37 and Rpn13, play distinct roles in mouse development. PLoS ONE 2010, 5:e13654.
    • (2010) PLoS ONE , vol.5
    • Al-Shami, A.1
  • 51
    • 77956527159 scopus 로고    scopus 로고
    • Enhancement of proteasome activity by a small-molecule inhibitor of USP14
    • Lee B.H., et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 2010, 467:179-184.
    • (2010) Nature , vol.467 , pp. 179-184
    • Lee, B.H.1
  • 52
    • 52049112825 scopus 로고    scopus 로고
    • Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin-remodeling complex
    • Yao T., et al. Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin-remodeling complex. Mol. Cell 2008, 31:909-917.
    • (2008) Mol. Cell , vol.31 , pp. 909-917
    • Yao, T.1
  • 53
    • 27944498719 scopus 로고    scopus 로고
    • The deubiquitinating enzyme UCH37 interacts with Smads and regulates TGF-beta signalling
    • Wicks S.J., et al. The deubiquitinating enzyme UCH37 interacts with Smads and regulates TGF-beta signalling. Oncogene 2005, 24:8080-8084.
    • (2005) Oncogene , vol.24 , pp. 8080-8084
    • Wicks, S.J.1
  • 54
    • 84867101138 scopus 로고    scopus 로고
    • The proteasomal de-ubiquitinating enzyme POH1 promotes the double-strand DNA break response
    • Butler L.R., et al. The proteasomal de-ubiquitinating enzyme POH1 promotes the double-strand DNA break response. EMBO J. 2012, 31:3918-3934.
    • (2012) EMBO J. , vol.31 , pp. 3918-3934
    • Butler, L.R.1
  • 55
    • 41649083740 scopus 로고    scopus 로고
    • Dissection of the carboxyl-terminal domain of the proteasomal subunit Rpn11 in maintenance of mitochondrial structure and function
    • Rinaldi T., et al. Dissection of the carboxyl-terminal domain of the proteasomal subunit Rpn11 in maintenance of mitochondrial structure and function. Mol. Biol. Cell 2008, 19:1022-1031.
    • (2008) Mol. Biol. Cell , vol.19 , pp. 1022-1031
    • Rinaldi, T.1
  • 56
    • 65649123769 scopus 로고    scopus 로고
    • Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii
    • Zhang F., et al. Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol. Cell 2009, 34:485-496.
    • (2009) Mol. Cell , vol.34 , pp. 485-496
    • Zhang, F.1
  • 57
    • 0031038169 scopus 로고    scopus 로고
    • Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome
    • Lam Y.A., et al. Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature 1997, 385:737-740.
    • (1997) Nature , vol.385 , pp. 737-740
    • Lam, Y.A.1
  • 58
    • 72149130935 scopus 로고    scopus 로고
    • The lysine 48 and lysine 63 ubiquitin conjugates are processed differently by the 26 s proteasome
    • Jacobson A.D., et al. The lysine 48 and lysine 63 ubiquitin conjugates are processed differently by the 26 s proteasome. J. Biol. Chem. 2009, 284:35485-35494.
    • (2009) J. Biol. Chem. , vol.284 , pp. 35485-35494
    • Jacobson, A.D.1
  • 59
    • 0035958926 scopus 로고    scopus 로고
    • In vitro assembly and recognition of Lys-63 polyubiquitin chains
    • Hofmann R.M., Pickart C.M. In vitro assembly and recognition of Lys-63 polyubiquitin chains. J. Biol. Chem. 2001, 276:27936-27943.
    • (2001) J. Biol. Chem. , vol.276 , pp. 27936-27943
    • Hofmann, R.M.1    Pickart, C.M.2
  • 60
    • 0347087494 scopus 로고    scopus 로고
    • Complementary roles for Rpn11 and Ubp6 in deubiquitination and proteolysis by the proteasome
    • Guterman A., Glickman M.H. Complementary roles for Rpn11 and Ubp6 in deubiquitination and proteolysis by the proteasome. J. Biol. Chem. 2004, 279:1729-1738.
    • (2004) J. Biol. Chem. , vol.279 , pp. 1729-1738
    • Guterman, A.1    Glickman, M.H.2
  • 61
    • 41649091606 scopus 로고    scopus 로고
    • Relative structural and functional roles of multiple deubiquitylating proteins associated with mammalian 26S proteasome
    • Koulich E., et al. Relative structural and functional roles of multiple deubiquitylating proteins associated with mammalian 26S proteasome. Mol. Biol. Cell 2008, 19:1072-1082.
    • (2008) Mol. Biol. Cell , vol.19 , pp. 1072-1082
    • Koulich, E.1
  • 62
    • 77956373713 scopus 로고    scopus 로고
    • Regulation of NF-κB activity and inducible nitric oxide synthase by regulatory particle non-ATPase subunit 13 (Rpn13)
    • Mazumdar T., et al. Regulation of NF-κB activity and inducible nitric oxide synthase by regulatory particle non-ATPase subunit 13 (Rpn13). Proc. Natl. Acad. Sci. U.S.A. 2010, 107:13854-13859.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 13854-13859
    • Mazumdar, T.1
  • 63
    • 79960402451 scopus 로고    scopus 로고
    • Ubiquitin chain trimming recycles the substrate binding sites of the 26 S proteasome and promotes degradation of lysine 48-linked polyubiquitin conjugates
    • Zhang N.Y., et al. Ubiquitin chain trimming recycles the substrate binding sites of the 26 S proteasome and promotes degradation of lysine 48-linked polyubiquitin conjugates. J. Biol. Chem. 2011, 286:25540-25546.
    • (2011) J. Biol. Chem. , vol.286 , pp. 25540-25546
    • Zhang, N.Y.1
  • 64
    • 77951972141 scopus 로고    scopus 로고
    • Structure of proteasome ubiquitin receptor hRpn13 and its activation by the scaffolding protein hRpn2
    • Chen X., et al. Structure of proteasome ubiquitin receptor hRpn13 and its activation by the scaffolding protein hRpn2. Mol. Cell 2010, 38:404-415.
    • (2010) Mol. Cell , vol.38 , pp. 404-415
    • Chen, X.1
  • 65
    • 33745742269 scopus 로고    scopus 로고
    • Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology
    • Kirkpatrick D.S., et al. Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat. Cell Biol. 2006, 8:700-710.
    • (2006) Nat. Cell Biol. , vol.8 , pp. 700-710
    • Kirkpatrick, D.S.1
  • 66
    • 34249007126 scopus 로고    scopus 로고
    • A ubiquitin stress response induces altered proteasome composition
    • Hanna J., et al. A ubiquitin stress response induces altered proteasome composition. Cell 2007, 129:747-759.
    • (2007) Cell , vol.129 , pp. 747-759
    • Hanna, J.1
  • 67
    • 28544434064 scopus 로고    scopus 로고
    • A conserved processing mechanism regulates the activity of transcription factors Cubitus interruptus and NF-κB
    • Tian L., et al. A conserved processing mechanism regulates the activity of transcription factors Cubitus interruptus and NF-κB. Nat. Struct. Mol. Biol. 2005, 12:1045-1053.
    • (2005) Nat. Struct. Mol. Biol. , vol.12 , pp. 1045-1053
    • Tian, L.1
  • 68
    • 34547130325 scopus 로고    scopus 로고
    • Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages
    • Kim H.T., et al. Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages. J. Biol. Chem. 2007, 282:17375-17386.
    • (2007) J. Biol. Chem. , vol.282 , pp. 17375-17386
    • Kim, H.T.1
  • 69
    • 60549107173 scopus 로고    scopus 로고
    • Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome
    • Saeki Y., et al. Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO J. 2009, 28:359-371.
    • (2009) EMBO J. , vol.28 , pp. 359-371
    • Saeki, Y.1
  • 70
    • 84856085129 scopus 로고    scopus 로고
    • Inhibition of proteasome deubiquitinating activity as a new cancer therapy
    • D'Arcy P., et al. Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nat. Med. 2011, 17:1636-1640.
    • (2011) Nat. Med. , vol.17 , pp. 1636-1640
    • D'Arcy, P.1
  • 71
    • 11844294713 scopus 로고    scopus 로고
    • Induction of lysosomal membrane permeabilization by compounds that activate p53-independent apoptosis
    • Erdal H., et al. Induction of lysosomal membrane permeabilization by compounds that activate p53-independent apoptosis. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:192-197.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 192-197
    • Erdal, H.1
  • 73
    • 67349132223 scopus 로고    scopus 로고
    • Physiological functions of the HECT family of ubiquitin ligases
    • Rotin D., Kumar S. Physiological functions of the HECT family of ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 2009, 10:398-409.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 398-409
    • Rotin, D.1    Kumar, S.2
  • 74
    • 71449123070 scopus 로고    scopus 로고
    • Detection of sequential polyubiquitylation on a millisecond timescale
    • Pierce N.W., et al. Detection of sequential polyubiquitylation on a millisecond timescale. Nature 2009, 462:615-619.
    • (2009) Nature , vol.462 , pp. 615-619
    • Pierce, N.W.1
  • 75
    • 33947243954 scopus 로고    scopus 로고
    • A ubiquitin ligase transfers preformed polyubiquitin chains from a conjugating enzyme to a substrate
    • Li W., et al. A ubiquitin ligase transfers preformed polyubiquitin chains from a conjugating enzyme to a substrate. Nature 2007, 446:333-337.
    • (2007) Nature , vol.446 , pp. 333-337
    • Li, W.1
  • 76
    • 63049125531 scopus 로고    scopus 로고
    • Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation
    • Xu P., et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 2009, 137:133-145.
    • (2009) Cell , vol.137 , pp. 133-145
    • Xu, P.1
  • 77
    • 84863338304 scopus 로고    scopus 로고
    • Ubiquitination in signaling to and activation of IKK
    • Chen Z.J. Ubiquitination in signaling to and activation of IKK. Immunol. Rev. 2012, 246:95-106.
    • (2012) Immunol. Rev. , vol.246 , pp. 95-106
    • Chen, Z.J.1
  • 78
    • 83755224757 scopus 로고    scopus 로고
    • Cellular strategies for making monoubiquitin signals
    • Ramanathan H.N., Ye Y. Cellular strategies for making monoubiquitin signals. Crit. Rev. Biochem. Mol. Biol. 2012, 47:17-28.
    • (2012) Crit. Rev. Biochem. Mol. Biol. , vol.47 , pp. 17-28
    • Ramanathan, H.N.1    Ye, Y.2
  • 79
    • 67650620318 scopus 로고    scopus 로고
    • Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes
    • Reyes-Turcu F.E., et al. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu. Rev. Biochem. 2009, 78:363-397.
    • (2009) Annu. Rev. Biochem. , vol.78 , pp. 363-397
    • Reyes-Turcu, F.E.1
  • 80
    • 84861380457 scopus 로고    scopus 로고
    • Deubiquitinases in cancer: new functions and therapeutic options
    • Fraile J.M., et al. Deubiquitinases in cancer: new functions and therapeutic options. Oncogene 2012, 31:2373-2388.
    • (2012) Oncogene , vol.31 , pp. 2373-2388
    • Fraile, J.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.