메뉴 건너뛰기




Volumn 50, Issue , 2013, Pages 637-647

Very short-term wind speed forecasting with Bayesian structural break model

Author keywords

Bayesian structural break model; Forecasting; Time series; Wind power; Wind speed

Indexed keywords

FORECASTING; MODEL PREDICTIVE CONTROL; SPEED; TIME SERIES; WEATHER FORECASTING; WIND POWER; WIND TURBINES;

EID: 84865557377     PISSN: 09601481     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.renene.2012.07.041     Document Type: Article
Times cited : (141)

References (36)
  • 1
    • 84867744459 scopus 로고    scopus 로고
    • Wang J and Conzelmann G. Wind power forecasting: state-of-the-art 2009. Argonne National Laboratory; Argonne, Illinois, USA, Tech. Rep. ANL/DIS-10-1.
    • Monteiro R, Bessa V, Miranda A, Botterud A, Wang J and Conzelmann G. 2009. Wind power forecasting: state-of-the-art 2009. Argonne National Laboratory; Argonne, Illinois, USA, Tech. Rep. ANL/DIS-10-1.
    • (2009)
    • Monteiro, R.1    Bessa, V.2    Miranda, A.3    Botterud, A.4
  • 2
    • 70049104692 scopus 로고    scopus 로고
    • Anticipatory control of wind turbines with data-driven predictive models
    • Kusiak A., Song Z., Zheng H. Anticipatory control of wind turbines with data-driven predictive models. IEEE Transactions on Energy Conversion 2009, 24:766-774.
    • (2009) IEEE Transactions on Energy Conversion , vol.24 , pp. 766-774
    • Kusiak, A.1    Song, Z.2    Zheng, H.3
  • 3
    • 71549130448 scopus 로고    scopus 로고
    • Dynamic control of wind turbines
    • Kusiak A., Li W., Song Z. Dynamic control of wind turbines. Renewable Energy 2010, 35:456-463.
    • (2010) Renewable Energy , vol.35 , pp. 456-463
    • Kusiak, A.1    Li, W.2    Song, Z.3
  • 5
    • 40949159664 scopus 로고    scopus 로고
    • The economic benefit of short-term forecasting for wind energy in the UK electricity market
    • Barthelmie R.J., Murray F., Pryor S.C. The economic benefit of short-term forecasting for wind energy in the UK electricity market. Energy Policy 2008, 36:1687-1696.
    • (2008) Energy Policy , vol.36 , pp. 1687-1696
    • Barthelmie, R.J.1    Murray, F.2    Pryor, S.C.3
  • 7
  • 8
    • 0034286972 scopus 로고    scopus 로고
    • A comparison of various forecasting techniques applied to mean hourly wind speed time series
    • Sfetsos A. A comparison of various forecasting techniques applied to mean hourly wind speed time series. Renewable Energy 2000, 21:23-35.
    • (2000) Renewable Energy , vol.21 , pp. 23-35
    • Sfetsos, A.1
  • 10
    • 55349098201 scopus 로고    scopus 로고
    • Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models
    • Jursa R., Rohrig K. Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models. International Journal of Forecasting 2008, 24:694-709.
    • (2008) International Journal of Forecasting , vol.24 , pp. 694-709
    • Jursa, R.1    Rohrig, K.2
  • 11
    • 31744451232 scopus 로고    scopus 로고
    • Short-term prediction of wind energy production
    • Sanchez I. Short-term prediction of wind energy production. International Journal of Forecasting 2006, 22:43-56.
    • (2006) International Journal of Forecasting , vol.22 , pp. 43-56
    • Sanchez, I.1
  • 12
    • 65249086722 scopus 로고    scopus 로고
    • Wind farm power prediction: a data-mining approach
    • Kusiak A., Zheng H., Song Z. Wind farm power prediction: a data-mining approach. Wind Energy 2009, 12:275-293.
    • (2009) Wind Energy , vol.12 , pp. 275-293
    • Kusiak, A.1    Zheng, H.2    Song, Z.3
  • 14
    • 55349144840 scopus 로고    scopus 로고
    • Adaptive combination of forecasts with application to wind energy
    • Sanchez I. Adaptive combination of forecasts with application to wind energy. International Journal of Forecasting 2008, 24:679-693.
    • (2008) International Journal of Forecasting , vol.24 , pp. 679-693
    • Sanchez, I.1
  • 15
    • 77955279506 scopus 로고    scopus 로고
    • Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs
    • Hong Y., Chang H., Chiu C. Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs. Energy 2010, 35(9):3870-3876.
    • (2010) Energy , vol.35 , Issue.9 , pp. 3870-3876
    • Hong, Y.1    Chang, H.2    Chiu, C.3
  • 16
    • 58949103845 scopus 로고    scopus 로고
    • Day-ahead wind speed forecasting using f-ARIMA models
    • Kavasseri R.G., Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy 2009, 34:1388-1393.
    • (2009) Renewable Energy , vol.34 , pp. 1388-1393
    • Kavasseri, R.G.1    Seetharaman, K.2
  • 17
    • 77949570119 scopus 로고    scopus 로고
    • A hybrid statistical method to predict wind speed and wind power
    • Liu H., Tian H., Chen C., Li Y. A hybrid statistical method to predict wind speed and wind power. Renewable Energy 2010, 35:1857-1861.
    • (2010) Renewable Energy , vol.35 , pp. 1857-1861
    • Liu, H.1    Tian, H.2    Chen, C.3    Li, Y.4
  • 19
    • 77954315872 scopus 로고    scopus 로고
    • Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model
    • Cadenas E., Rivera W. Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model. Renewable Energy 2010, 35:2732-2738.
    • (2010) Renewable Energy , vol.35 , pp. 2732-2738
    • Cadenas, E.1    Rivera, W.2
  • 20
    • 14344258897 scopus 로고    scopus 로고
    • On-line assessment of prediction risk for wind power production forecasts
    • Pinson P., Kariniotakis G. On-line assessment of prediction risk for wind power production forecasts. Wind Energy 2004, 7:119-132.
    • (2004) Wind Energy , vol.7 , pp. 119-132
    • Pinson, P.1    Kariniotakis, G.2
  • 21
    • 74149093707 scopus 로고    scopus 로고
    • From probabilistic forecasts to statistical scenarios of short-term wind power production
    • Pinson P., Madsen H., Nielsen H.A., Papaefthymiou G., Klöckl B. From probabilistic forecasts to statistical scenarios of short-term wind power production. Wind Energy 2009, 12:51-62.
    • (2009) Wind Energy , vol.12 , pp. 51-62
    • Pinson, P.1    Madsen, H.2    Nielsen, H.A.3    Papaefthymiou, G.4    Klöckl, B.5
  • 22
  • 23
    • 79958278976 scopus 로고    scopus 로고
    • Inference and prediction in a multiple-structural-break model
    • Geweke J., Jiang Y. Inference and prediction in a multiple-structural-break model. Journal of Econometrics 2011, 132:172-185.
    • (2011) Journal of Econometrics , vol.132 , pp. 172-185
    • Geweke, J.1    Jiang, Y.2
  • 24
    • 33750454382 scopus 로고    scopus 로고
    • Dealing with structural breaks
    • Palgrave Macmillan, K. Patterson, T. Mills (Eds.) Palgrave handbook of econometrics
    • Perron P. Dealing with structural breaks. Econometric theory 2006, vol. 1:278-352. Palgrave Macmillan. K. Patterson, T. Mills (Eds.).
    • (2006) Econometric theory , vol.1 , pp. 278-352
    • Perron, P.1
  • 27
    • 4344646763 scopus 로고    scopus 로고
    • How costly is it to ignore breaks when forecasting the direction of a time series?
    • Pesaran M., Timmermann A. How costly is it to ignore breaks when forecasting the direction of a time series?. International Journal of Forecasting 2004, 20:411-425.
    • (2004) International Journal of Forecasting , vol.20 , pp. 411-425
    • Pesaran, M.1    Timmermann, A.2
  • 28
    • 34250749750 scopus 로고    scopus 로고
    • Estimation and forecasting in models with multiple breaks
    • Koop G., Potter S. Estimation and forecasting in models with multiple breaks. Review of Economic Studies 2007, 74:763-789.
    • (2007) Review of Economic Studies , vol.74 , pp. 763-789
    • Koop, G.1    Potter, S.2
  • 29
    • 77649272473 scopus 로고    scopus 로고
    • Bayesian forecasting using stochastic search variable selection in a VAR subject to breaks
    • Jochmann M., Koop G., Strachan R. Bayesian forecasting using stochastic search variable selection in a VAR subject to breaks. International Journal of Forecasting 2010, 26:326-347.
    • (2010) International Journal of Forecasting , vol.26 , pp. 326-347
    • Jochmann, M.1    Koop, G.2    Strachan, R.3
  • 33
    • 84861064867 scopus 로고    scopus 로고
    • Adaptive modelling and forecasting of wind power fluctuations with Markov-switching autoregressive models
    • Pinson P., Madsen H. Adaptive modelling and forecasting of wind power fluctuations with Markov-switching autoregressive models. Journal of Forecasting 2012, 31(4):281-313.
    • (2012) Journal of Forecasting , vol.31 , Issue.4 , pp. 281-313
    • Pinson, P.1    Madsen, H.2
  • 35
    • 0003122168 scopus 로고    scopus 로고
    • Estimation and comparison of multiple change-point models
    • Chib S. Estimation and comparison of multiple change-point models. Journal of Econometrics 1998, 86:221-241.
    • (1998) Journal of Econometrics , vol.86 , pp. 221-241
    • Chib, S.1
  • 36
    • 78650940664 scopus 로고    scopus 로고
    • Quantiles as optimal point predictors
    • Gneiting T. Quantiles as optimal point predictors. International Journal of Forecasting 2011, 27(2):197-207.
    • (2011) International Journal of Forecasting , vol.27 , Issue.2 , pp. 197-207
    • Gneiting, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.