메뉴 건너뛰기




Volumn 49, Issue , 2015, Pages 534-562

Retraction notice to “Artificial neural networks applications in wind energy systems: A review” [Renew Sustain Energy Rev (2015) 534−62](S1364032115004360)(10.1016/j.rser.2015.04.166);Artificial neural networks applications in wind energy systems: a review

Author keywords

Artificial neural networks; System modeling; System performance prediction; Wind energy sytems

Indexed keywords

FORECASTING; WIND POWER;

EID: 84997706201     PISSN: 13640321     EISSN: 18790690     Source Type: Journal    
DOI: 10.1016/j.rser.2018.01.003     Document Type: Erratum
Times cited : (201)

References (168)
  • 1
    • 0034963531 scopus 로고    scopus 로고
    • Artificial neural networks in renewable energy systems applications: a review
    • [1] Kalogirou, S.A., Artificial neural networks in renewable energy systems applications: a review. Renew Sustain Energy Rev 5 (2001), 373–401.
    • (2001) Renew Sustain Energy Rev , vol.5 , pp. 373-401
    • Kalogirou, S.A.1
  • 2
    • 85151984776 scopus 로고
    • Learning internal representations by error propagation. In: Proceedings of the parallel distributed processing: explorations in the microstructure of cognition, vol. 1, Chapter 8. Cambridge (MA): MIT Press;.
    • [2] Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by error propagation. In: Proceedings of the parallel distributed processing: explorations in the microstructure of cognition, vol. 1, Chapter 8. Cambridge (MA): MIT Press; 1986.
    • (1986)
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 3
    • 0242269356 scopus 로고    scopus 로고
    • Artificial intelligence for the modeling and control of combustion processes: a review
    • [3] Kalogirou, S.A., Artificial intelligence for the modeling and control of combustion processes: a review. Prog Energy Combust Sci 29 (2003), 515–566.
    • (2003) Prog Energy Combust Sci , vol.29 , pp. 515-566
    • Kalogirou, S.A.1
  • 4
    • 47149095417 scopus 로고    scopus 로고
    • Artificial intelligence techniques for photovoltaic applications: a review
    • [4] Mellit, A., Kalogirou, S.A., Artificial intelligence techniques for photovoltaic applications: a review. Prog Energy Combust Sci 34 (2008), 574–632.
    • (2008) Prog Energy Combust Sci , vol.34 , pp. 574-632
    • Mellit, A.1    Kalogirou, S.A.2
  • 5
    • 64549099947 scopus 로고    scopus 로고
    • Artificial neural networks in energy applications in buildings
    • [5] Kalogirou, S.A., Artificial neural networks in energy applications in buildings. Int J Low-Carbon Technol 1:3 (2006), 201–216.
    • (2006) Int J Low-Carbon Technol , vol.1 , Issue.3 , pp. 201-216
    • Kalogirou, S.A.1
  • 6
    • 84855279889 scopus 로고    scopus 로고
    • Applications of artificial neural networks for refrigeration, air conditioning and heat pump systems e a review
    • [6] Mohanraj, M., Jayaraj, S., Muraleedharan, C., Applications of artificial neural networks for refrigeration, air conditioning and heat pump systems e a review. Renew Sustain Energy Rev 16 (2012), 1340–1358.
    • (2012) Renew Sustain Energy Rev , vol.16 , pp. 1340-1358
    • Mohanraj, M.1    Jayaraj, S.2    Muraleedharan, C.3
  • 7
    • 84867818145 scopus 로고    scopus 로고
    • Applications of ANN in fluid flow and heat transfer problems in nuclear engineering: a review work
    • [7] Cong, T., Su, G., Qiu, S., Tian, W., Applications of ANN in fluid flow and heat transfer problems in nuclear engineering: a review work. Prog Nucl Energy 62 (2013), 54–71.
    • (2013) Prog Nucl Energy , vol.62 , pp. 54-71
    • Cong, T.1    Su, G.2    Qiu, S.3    Tian, W.4
  • 8
    • 57649222644 scopus 로고    scopus 로고
    • Artificial intelligence techniques for sizing photovoltaic systems: a review
    • [8] Mellit, A., Kalogirou, S.A., Hontoria, L., Shaari, S., Artificial intelligence techniques for sizing photovoltaic systems: a review. Renew Sustain Energy Rev 13 (2009), 406–419.
    • (2009) Renew Sustain Energy Rev , vol.13 , pp. 406-419
    • Mellit, A.1    Kalogirou, S.A.2    Hontoria, L.3    Shaari, S.4
  • 9
    • 0033686465 scopus 로고    scopus 로고
    • Applications of artificial neural networks for energy systems
    • [9] Kalogirou, S.A., Applications of artificial neural networks for energy systems. Appl Energy 67 (2000), 17–35.
    • (2000) Appl Energy , vol.67 , pp. 17-35
    • Kalogirou, S.A.1
  • 10
    • 0032675088 scopus 로고    scopus 로고
    • Applications of artificial neural networks in energy systems: a review
    • [10] Kalogirou, S.A., Applications of artificial neural networks in energy systems: a review. Energy Convers Manag 40 (1999), 1073–1087.
    • (1999) Energy Convers Manag , vol.40 , pp. 1073-1087
    • Kalogirou, S.A.1
  • 11
    • 0032735194 scopus 로고    scopus 로고
    • Review of the applications of neural networks in chemical process control e simulation and online implementation
    • [11] Hussain, M.A., Review of the applications of neural networks in chemical process control e simulation and online implementation. Artif Intell Eng 13 (1999), 55–68.
    • (1999) Artif Intell Eng , vol.13 , pp. 55-68
    • Hussain, M.A.1
  • 12
    • 84920721046 scopus 로고    scopus 로고
    • Applications of artificial neural networks for thermal analysis of heat exchangers–a review
    • [12] Mohanraj, M., Jayaraj, S., Muraleedharan, C., Applications of artificial neural networks for thermal analysis of heat exchangers–a review. Int J Therm Sci 90 (2015), 150–172.
    • (2015) Int J Therm Sci , vol.90 , pp. 150-172
    • Mohanraj, M.1    Jayaraj, S.2    Muraleedharan, C.3
  • 13
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks. The state of the art
    • [13] Zhang, G., Zhang, B.E., Patuwo, M., Hu, Y., Forecasting with artificial neural networks. The state of the art. Int J Forecast 14 (1998), 35–62.
    • (1998) Int J Forecast , vol.14 , pp. 35-62
    • Zhang, G.1    Zhang, B.E.2    Patuwo, M.3    Hu, Y.4
  • 14
    • 0032146239 scopus 로고    scopus 로고
    • Artificial neural networks (the multilayer perceptron)– a review of applications in the atmospheric sciences
    • [14] Gardner, M.W., Dorling, S.R., Artificial neural networks (the multilayer perceptron)– a review of applications in the atmospheric sciences. Atmos Environ 32 (1998), 2627–2636.
    • (1998) Atmos Environ , vol.32 , pp. 2627-2636
    • Gardner, M.W.1    Dorling, S.R.2
  • 15
    • 25644459607 scopus 로고    scopus 로고
    • Introduction to machine learning
    • The MIT Press Cambridge, London, England
    • [15] Alpaydın, E., Introduction to machine learning. 2004, The MIT Press, Cambridge, London, England.
    • (2004)
    • Alpaydın, E.1
  • 16
    • 33746976184 scopus 로고    scopus 로고
    • Use of artificial neural networks for transport energy demand modeling
    • [16] Murat, Y.S., Ceylan, H., Use of artificial neural networks for transport energy demand modeling. Energy Policy 34 (2006), 3165–3172.
    • (2006) Energy Policy , vol.34 , pp. 3165-3172
    • Murat, Y.S.1    Ceylan, H.2
  • 17
    • 48749097894 scopus 로고    scopus 로고
    • Performance prediction of a groundcoupled heat pump using neural networks
    • [17] Esen, H., Inalli, M., Sengur, A., Esen, M., Performance prediction of a groundcoupled heat pump using neural networks. Expert Syst Appl 35 (2008), 1940–1948.
    • (2008) Expert Syst Appl , vol.35 , pp. 1940-1948
    • Esen, H.1    Inalli, M.2    Sengur, A.3    Esen, M.4
  • 18
    • 38949123349 scopus 로고    scopus 로고
    • Artificial neural networks and adaptive neuro-fuzzy assessments for ground-coupled heat pump system
    • [18] Esen, H., Inalli, M., Sengur, A., Esen, M., Artificial neural networks and adaptive neuro-fuzzy assessments for ground-coupled heat pump system. Energy Build 40 (2008), 1074–1083.
    • (2008) Energy Build , vol.40 , pp. 1074-1083
    • Esen, H.1    Inalli, M.2    Sengur, A.3    Esen, M.4
  • 19
    • 0037374672 scopus 로고    scopus 로고
    • Backpropagation neural networks for modeling gasoline consumption
    • [19] Nasr, G.E., Badr, E.A., Joun, C., Backpropagation neural networks for modeling gasoline consumption. Energy Convers Manag 44 (2003), 893–905.
    • (2003) Energy Convers Manag , vol.44 , pp. 893-905
    • Nasr, G.E.1    Badr, E.A.2    Joun, C.3
  • 20
    • 67349110515 scopus 로고    scopus 로고
    • Artificial neural network and wavelet neural network approaches for modeling of a solar air heater
    • [20] Esen, H., Ozgen, F., Esen, M., Sengur, A., Artificial neural network and wavelet neural network approaches for modeling of a solar air heater. Exp Syst Appl 36 (2009), 11240–11248.
    • (2009) Exp Syst Appl , vol.36 , pp. 11240-11248
    • Esen, H.1    Ozgen, F.2    Esen, M.3    Sengur, A.4
  • 21
    • 38749092234 scopus 로고    scopus 로고
    • Forecasting of a ground-coupled heat pump performance using neural networks with statistical data weighting pre-processing
    • [21] Esen, H., Inalli, M., Sengur, A., Esen, M., Forecasting of a ground-coupled heat pump performance using neural networks with statistical data weighting pre-processing. Int J Therm Sci 47 (2008), 431–441.
    • (2008) Int J Therm Sci , vol.47 , pp. 431-441
    • Esen, H.1    Inalli, M.2    Sengur, A.3    Esen, M.4
  • 22
    • 85152070567 scopus 로고    scopus 로고
    • Ultra-short-term wind power prediction using ANN ensemble based on PCA. In: Proccedings of the IEEE 7th international power electronics and motion control conference – ECCE Asia; June 2–5,, Harbin, China.
    • [22] He D, Liu R. Ultra-short-term wind power prediction using ANN ensemble based on PCA. In: Proccedings of the IEEE 7th international power electronics and motion control conference – ECCE Asia; June 2–5, 2012, Harbin, China.
    • (2012)
    • He, D.1    Liu, R.2
  • 23
    • 85152041577 scopus 로고    scopus 로고
    • Chao Lin T, Maunuksela J. GA-ANN for short-term wind energy prediction. In: Proceedings of the power and energy engineering conference (APPEEC). Asia-Pacific; p. 1–6
    • [23] Kolhe M, Chao Lin T, Maunuksela J. GA-ANN for short-term wind energy prediction. In: Proceedings of the power and energy engineering conference (APPEEC). Asia-Pacific; 2011 p. 1–6.
    • (2011)
    • Kolhe, M.1
  • 24
    • 47549109258 scopus 로고    scopus 로고
    • Short-term prediction of household electricity consumption: assessing weather sensitivity in a Mediterranean area
    • [24] Beccali, M., Cellura, M., Lo Brano, V., Marvuglia, A., Short-term prediction of household electricity consumption: assessing weather sensitivity in a Mediterranean area. Renew Sustain Energy Rev 12:8 (2008), 2040–2065.
    • (2008) Renew Sustain Energy Rev , vol.12 , Issue.8 , pp. 2040-2065
    • Beccali, M.1    Cellura, M.2    Lo Brano, V.3    Marvuglia, A.4
  • 25
    • 0032122184 scopus 로고
    • Short term forecasting of wind speed and related electrical power
    • [25] Alexiadis, M., Dokopoulos, I., Sahsamanoglou, H., Manousardis, I., Short term forecasting of wind speed and related electrical power. Sol Energy 63:1 (1988), 61–68.
    • (1988) Sol Energy , vol.63 , Issue.1 , pp. 61-68
    • Alexiadis, M.1    Dokopoulos, I.2    Sahsamanoglou, H.3    Manousardis, I.4
  • 26
    • 78649450621 scopus 로고    scopus 로고
    • Short-term wind power forecasting in Portugal by neural networks and wavelet transform
    • [26] Catalão, J.P.S., Pousinho, H.M.I., Mendes, V.M.F., Short-term wind power forecasting in Portugal by neural networks and wavelet transform. Renew Energy 36:4 (2011), 1245–1251.
    • (2011) Renew Energy , vol.36 , Issue.4 , pp. 1245-1251
    • Catalão, J.P.S.1    Pousinho, H.M.I.2    Mendes, V.M.F.3
  • 28
    • 85151978760 scopus 로고    scopus 로고
    • Short term wind power forecasting using Hilbert-Huang Transform and artificial neural network. In: Proceedings of the 4th international conference on electric utility deregulation and restructuring and power technologies (DRPT);. p. 162–7.
    • [28] Jie S, Wei-Jen L, Yongqian L, Yongping Y, Wang P. Short term wind power forecasting using Hilbert-Huang Transform and artificial neural network. In: Proceedings of the 4th international conference on electric utility deregulation and restructuring and power technologies (DRPT); 2011. p. 162–7.
    • (2011)
    • Jie, S.1    Wei-Jen, L.2    Yongqian, L.3    Yongping, Y.4    Wang, P.5
  • 29
    • 78650561071 scopus 로고    scopus 로고
    • Error analysis of short term wind power prediction models
    • [29] De Giorgi, M.G., Ficarella, A., Tarantino, M., Error analysis of short term wind power prediction models. Appl Energy 88:4 (2011), 1298–1311.
    • (2011) Appl Energy , vol.88 , Issue.4 , pp. 1298-1311
    • De Giorgi, M.G.1    Ficarella, A.2    Tarantino, M.3
  • 30
    • 84865439917 scopus 로고    scopus 로고
    • A hybrid strategy of short term wind power prediction
    • [30] Peng, H., Liu, F., Yang, X., A hybrid strategy of short term wind power prediction. Renew Energy 50 (2013), 590–595.
    • (2013) Renew Energy , vol.50 , pp. 590-595
    • Peng, H.1    Liu, F.2    Yang, X.3
  • 31
    • 85152005279 scopus 로고    scopus 로고
    • Radial basis function neural network based short-term wind power forecasting with Grubbs test. In: Proceedings of the 4th international conference on electric utility deregulation and restructuring and power technologies (DRPT); 6–9 July 2011. p. 1879–82.
    • [31] Wu X, Wen F, Hong B, Peng X, Huang J. Radial basis function neural network based short-term wind power forecasting with Grubbs test. In: Proceedings of the 2011 4th international conference on electric utility deregulation and restructuring and power technologies (DRPT); 6–9 July 2011. p. 1879–82.
    • (2011)
    • Wu, X.1    Wen, F.2    Hong, B.3    Peng, X.4    Huang, J.5
  • 32
    • 7444227472 scopus 로고    scopus 로고
    • Application of a control algorithm for wind speed prediction and active power generation
    • [32] Flores, P., Tapia, A., Tapia, G., Application of a control algorithm for wind speed prediction and active power generation. Renew Energy 30:4 (2005), 523–536.
    • (2005) Renew Energy , vol.30 , Issue.4 , pp. 523-536
    • Flores, P.1    Tapia, A.2    Tapia, G.3
  • 33
    • 55349098201 scopus 로고    scopus 로고
    • Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models
    • [33] Jursa, R., Rohrig, K., Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models. Int J Forecast 24:4 (2008), 694–709.
    • (2008) Int J Forecast , vol.24 , Issue.4 , pp. 694-709
    • Jursa, R.1    Rohrig, K.2
  • 34
    • 78049524148 scopus 로고    scopus 로고
    • A hybrid PSO–ANFIS approach for short-term wind power prediction in Portugal
    • [34] Pousinho, H.M.I., Mendes, V.M.F., Catalão, J.P.S., A hybrid PSO–ANFIS approach for short-term wind power prediction in Portugal. Energy Convers Manag 52 (2011), 397–402.
    • (2011) Energy Convers Manag , vol.52 , pp. 397-402
    • Pousinho, H.M.I.1    Mendes, V.M.F.2    Catalão, J.P.S.3
  • 35
    • 84908376968 scopus 로고    scopus 로고
    • Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information
    • [35] Osorio, G.J., Matias, J.C.O., Catalao, J.P.S., Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renew Energy 75 (2015), 301–307.
    • (2015) Renew Energy , vol.75 , pp. 301-307
    • Osorio, G.J.1    Matias, J.C.O.2    Catalao, J.P.S.3
  • 36
    • 84876731436 scopus 로고    scopus 로고
    • An experimental investigation of two Wavelet-MLP hybrid frameworks for wind speed prediction using GA and PSO optimization
    • [36] Liu, H., Tian, H., Chen, C., Li, Y., An experimental investigation of two Wavelet-MLP hybrid frameworks for wind speed prediction using GA and PSO optimization. Electr Power Energy Syst 52 (2013), 161–173.
    • (2013) Electr Power Energy Syst , vol.52 , pp. 161-173
    • Liu, H.1    Tian, H.2    Chen, C.3    Li, Y.4
  • 37
    • 71849095349 scopus 로고    scopus 로고
    • Estimation of wind velocity over a complex terrain using the generalized mapping regressor
    • [37] Beccali, M., Cirrincione, G., Marvuglia, A., Serporta, C., Estimation of wind velocity over a complex terrain using the generalized mapping regressor. Appl Energy 87 (2010), 884–893.
    • (2010) Appl Energy , vol.87 , pp. 884-893
    • Beccali, M.1    Cirrincione, G.2    Marvuglia, A.3    Serporta, C.4
  • 38
    • 71849085127 scopus 로고    scopus 로고
    • The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria
    • [38] Fadare, D.A., The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria. Appl Energy 87 (2010), 934–942.
    • (2010) Appl Energy , vol.87 , pp. 934-942
    • Fadare, D.A.1
  • 39
    • 85152060584 scopus 로고    scopus 로고
    • A review of wind power and wind speed forecasting methods with different time horizons. In: Proceedings of the 42nd North American power symposium (NAPS) in Arlington, Texas, USA; September 26–28,.
    • [39] Soman SS, Zareipour H, Malik O, Mandal P. A review of wind power and wind speed forecasting methods with different time horizons. In: Proceedings of the 42nd North American power symposium (NAPS) in Arlington, Texas, USA; September 26–28, 2010.
    • (2010)
    • Soman, S.S.1    Zareipour, H.2    Malik, O.3    Mandal, P.4
  • 40
    • 85151963931 scopus 로고    scopus 로고
    • Wind speed prediction using OLS algorithm based on RBF neural network. In: Proceedings of the IEEE Asia-Pacific power and energy engineering conference;. p..
    • [40] Chen B., Zhao L., Wang X., Lu J.H., Liu G.Y., Cao R.F., et al. Wind speed prediction using OLS algorithm based on RBF neural network. In: Proceedings of the IEEE Asia-Pacific power and energy engineering conference; 2009. p. 1–4.
    • (2009) , pp. 1-4
    • Chen, B.1    Zhao, L.2    Wang, X.3    Lu, J.H.4    Liu, G.Y.5    Cao, R.F.6
  • 41
    • 54149110925 scopus 로고    scopus 로고
    • A new strategy for wind speed forecasting using artificial intelligent methods
    • [41] Monfared, M, Rastegar, H, Kojabadi, HM, A new strategy for wind speed forecasting using artificial intelligent methods. Renew Energy 34 (2009), 845–848.
    • (2009) Renew Energy , vol.34 , pp. 845-848
    • Monfared, M.1    Rastegar, H.2    Kojabadi, H.M.3
  • 43
    • 60249084947 scopus 로고    scopus 로고
    • Wind speed prediction using statistical regression and neural network
    • [43] Kulkarni, M.A., Patil, S., Rama, G.V., Sen, P.N., Wind speed prediction using statistical regression and neural network. J Earth Syst Sci 117:4 (2008), 457–463.
    • (2008) J Earth Syst Sci , vol.117 , Issue.4 , pp. 457-463
    • Kulkarni, M.A.1    Patil, S.2    Rama, G.V.3    Sen, P.N.4
  • 44
    • 42749083566 scopus 로고    scopus 로고
    • Effect of direction on wind speed estimation in complex terrain using neural networks
    • [44] Lo´pez, P., Velo, R., Maseda, F., Effect of direction on wind speed estimation in complex terrain using neural networks. Renew Energy 33 (2008), 2266–2272.
    • (2008) Renew Energy , vol.33 , pp. 2266-2272
    • Lo´pez, P.1    Velo, R.2    Maseda, F.3
  • 45
    • 33947151102 scopus 로고    scopus 로고
    • Wind speed forecasting in the South Coast of Oaxaca, México
    • [45] Cadenas, E., Rivera, W., Wind speed forecasting in the South Coast of Oaxaca, México. Renew Energy 32:12 (2007), 2116–2128.
    • (2007) Renew Energy , vol.32 , Issue.12 , pp. 2116-2128
    • Cadenas, E.1    Rivera, W.2
  • 46
    • 34250762015 scopus 로고    scopus 로고
    • Application of artificial neural networks for the wind speed prediction of target stations using reference stations data
    • [46] Bilgili, M., Sahin, B., Yasar, A., Application of artificial neural networks for the wind speed prediction of target stations using reference stations data. Renew Energy 32 (2007), 2350–2360.
    • (2007) Renew Energy , vol.32 , pp. 2350-2360
    • Bilgili, M.1    Sahin, B.2    Yasar, A.3
  • 47
    • 0032029065 scopus 로고    scopus 로고
    • A neural network approach for wind speed prediction
    • [47] Mohamed, A.M., Rehman, S., Halawani, T.O., A neural network approach for wind speed prediction. Renew Energy 13:3 (1998), 345–354.
    • (1998) Renew Energy , vol.13 , Issue.3 , pp. 345-354
    • Mohamed, A.M.1    Rehman, S.2    Halawani, T.O.3
  • 48
    • 85152047026 scopus 로고    scopus 로고
    • Wind speed prediction using artificial neural networks. In: Proceedings of the European symposium on intelligent techniques ESIT׳99. Crete (Greece);.
    • [48] Kalogirou S, Neocleous C, Paschiardis S, Schizas C. Wind speed prediction using artificial neural networks. In: Proceedings of the European symposium on intelligent techniques ESIT׳99. Crete (Greece); 1999.
    • (1999)
    • Kalogirou, S.1    Neocleous, C.2    Paschiardis, S.3    Schizas, C.4
  • 49
    • 85152075665 scopus 로고    scopus 로고
    • Wind speed and power prediction using artificial neural networks. In: Proceedings of the European wind energy conference, London, UK; November 22–25,.
    • [49] Jayaraj S, Padmakumari K, Sreevalsan E, Arun P. Wind speed and power prediction using artificial neural networks. In: Proceedings of the European wind energy conference, London, UK; November 22–25, 2004.
    • (2004)
    • Jayaraj, S.1    Padmakumari, K.2    Sreevalsan, E.3    Arun, P.4
  • 51
    • 13944263195 scopus 로고    scopus 로고
    • A classification mechanism for determining average wind speed and power in several regions of Turkey using artificial neural networks
    • [51] Cam, E., Arcaklıoğlu, E., Çavusoğlu, A., Akbıyık, B., A classification mechanism for determining average wind speed and power in several regions of Turkey using artificial neural networks. Renew Energy 30:2 (2005), 227–239.
    • (2005) Renew Energy , vol.30 , Issue.2 , pp. 227-239
    • Cam, E.1    Arcaklıoğlu, E.2    Çavusoğlu, A.3    Akbıyık, B.4
  • 52
    • 80052542435 scopus 로고    scopus 로고
    • Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography
    • [52] Philippopoulos, K., Deligiorgi, D., Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography. Renew Energy 38:1 (2012), 75–82.
    • (2012) Renew Energy , vol.38 , Issue.1 , pp. 75-82
    • Philippopoulos, K.1    Deligiorgi, D.2
  • 53
    • 34648852323 scopus 로고    scopus 로고
    • Locally recurrent neural networks for wind speed prediction using spatial correlation
    • [53] Barbounis, T.G., Theocharis, J.B., Locally recurrent neural networks for wind speed prediction using spatial correlation. Inf Sci 177 (2007), 5775–5797.
    • (2007) Inf Sci , vol.177 , pp. 5775-5797
    • Barbounis, T.G.1    Theocharis, J.B.2
  • 54
    • 77953137822 scopus 로고    scopus 로고
    • On comparing three artificial neural networks for wind speed forecasting
    • [54] Li, G., Shi, J., On comparing three artificial neural networks for wind speed forecasting. Appl Energy 87 (2010), 2313–2320.
    • (2010) Appl Energy , vol.87 , pp. 2313-2320
    • Li, G.1    Shi, J.2
  • 55
    • 0034286972 scopus 로고    scopus 로고
    • A comparison of various forecasting techniques applied to mean hourly wind speed time series
    • [55] Sfetsos, A., A comparison of various forecasting techniques applied to mean hourly wind speed time series. Renew Energy 21:1 (2000), 23–35.
    • (2000) Renew Energy , vol.21 , Issue.1 , pp. 23-35
    • Sfetsos, A.1
  • 56
    • 21844432124 scopus 로고    scopus 로고
    • Wind speed prediction using artificial neural networks
    • [56] Fonte, P.M., Silva, G.X., Quadrado, J.C., Wind speed prediction using artificial neural networks. WSEAS Trans Syst 4:4 (2005), 379–383.
    • (2005) WSEAS Trans Syst , vol.4 , Issue.4 , pp. 379-383
    • Fonte, P.M.1    Silva, G.X.2    Quadrado, J.C.3
  • 57
    • 0036779031 scopus 로고    scopus 로고
    • A novel approach for the forecasting of mean hourly wind speed time series
    • [57] Sfetsos, A., A novel approach for the forecasting of mean hourly wind speed time series. Renew Energy 27:2 (2002), 163–174.
    • (2002) Renew Energy , vol.27 , Issue.2 , pp. 163-174
    • Sfetsos, A.1
  • 58
    • 0033313265 scopus 로고    scopus 로고
    • Wind speed and power forecasting based on spatial correlation models
    • [58] Alexiadis, M.C., Dokopoulos, P.S., Sahsamanoglou, H.S., Wind speed and power forecasting based on spatial correlation models. IEEE Trans Energy Convers 14:3 (1999), 836–842.
    • (1999) IEEE Trans Energy Convers , vol.14 , Issue.3 , pp. 836-842
    • Alexiadis, M.C.1    Dokopoulos, P.S.2    Sahsamanoglou, H.S.3
  • 59
    • 56049116935 scopus 로고    scopus 로고
    • Wavelet cross-correlation analysis of wind speed series generated by ANN based models
    • [59] Turbelin, G., Ngae, P., Grignon, M., Wavelet cross-correlation analysis of wind speed series generated by ANN based models. Renew Energy 34 (2009), 1024–1032.
    • (2009) Renew Energy , vol.34 , pp. 1024-1032
    • Turbelin, G.1    Ngae, P.2    Grignon, M.3
  • 60
    • 77954315872 scopus 로고    scopus 로고
    • Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANN model
    • [60] Erasmo, C., Wilfrido, R., Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANN model. Renew Energy 35:12 (2010), 2732–2738.
    • (2010) Renew Energy , vol.35 , Issue.12 , pp. 2732-2738
    • Erasmo, C.1    Wilfrido, R.2
  • 61
    • 79952183962 scopus 로고    scopus 로고
    • A corrected hybrid approach for wind speed prediction in Hexi Corridor of China
    • [61] Guo, Z., Zhao, J., Zhang, W., Wang, J., A corrected hybrid approach for wind speed prediction in Hexi Corridor of China. Energy 36 (2011), 1668–1679.
    • (2011) Energy , vol.36 , pp. 1668-1679
    • Guo, Z.1    Zhao, J.2    Zhang, W.3    Wang, J.4
  • 62
    • 84862213628 scopus 로고    scopus 로고
    • Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction
    • [62] Liu, Hui, Tian, Hong-qi, Li, Yan-fei, Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction. Appl Energy 98 (2012), 415–424.
    • (2012) Appl Energy , vol.98 , pp. 415-424
    • Liu, H.1    Tian, H.-Q.2    Li, Y.-F.3
  • 63
    • 84884203391 scopus 로고    scopus 로고
    • Neural network based hybrid computing model for wind speed prediction
    • [63] Sheela, K.G., Deepa, S.N., Neural network based hybrid computing model for wind speed prediction. Neurocomputing 122 (2013), 425–429.
    • (2013) Neurocomputing , vol.122 , pp. 425-429
    • Sheela, K.G.1    Deepa, S.N.2
  • 64
    • 84875115854 scopus 로고    scopus 로고
    • Forecasting models for wind speed using wavelet, wavelet packet, time series and artificial neural networks
    • [64] Liu, Hui, Tian, Hong-qi, Pan, Di-fu, Li, Yan-fei, Forecasting models for wind speed using wavelet, wavelet packet, time series and artificial neural networks. Appl Energy 107 (2013), 191–208.
    • (2013) Appl Energy , vol.107 , pp. 191-208
    • Liu, H.1    Tian, H.-Q.2    Pan, D.-F.3    Li, Y.-F.4
  • 65
    • 84997719437 scopus 로고    scopus 로고
    • Wind speed forecasting in South Coasts of Iran: an application of artificial neural networks (ANNs) for electricity generation using renewable energy
    • [65] Hassan, B., Haroonabadi, H., Zadehali, R., Wind speed forecasting in South Coasts of Iran: an application of artificial neural networks (ANNs) for electricity generation using renewable energy. Bull Env Pharmacol Life Sci 2:6 (2013), 30–37.
    • (2013) Bull Env Pharmacol Life Sci , vol.2 , Issue.6 , pp. 30-37
    • Hassan, B.1    Haroonabadi, H.2    Zadehali, R.3
  • 66
    • 84859416828 scopus 로고    scopus 로고
    • Evaluation of hybrid forecasting approaches for wind speed and power generation time series
    • [66] Shi, J., Guo, J., Zheng, S., Evaluation of hybrid forecasting approaches for wind speed and power generation time series. Renew Sustain Energy Rev 16:5 (2012), 3471–3480.
    • (2012) Renew Sustain Energy Rev , vol.16 , Issue.5 , pp. 3471-3480
    • Shi, J.1    Guo, J.2    Zheng, S.3
  • 67
    • 79952454042 scopus 로고    scopus 로고
    • Multiple architecture system for wind speed prediction
    • [67] Bouzgou, H., Benoudjit, N., Multiple architecture system for wind speed prediction. Appl Energy 88:7 (2011), 2463–2471.
    • (2011) Appl Energy , vol.88 , Issue.7 , pp. 2463-2471
    • Bouzgou, H.1    Benoudjit, N.2
  • 68
    • 84863508830 scopus 로고    scopus 로고
    • A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks
    • [68] Liu, H., Chen, C., Tian, H., Li, Y., A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks. Renew Energy 48 (2012), 545–556.
    • (2012) Renew Energy , vol.48 , pp. 545-556
    • Liu, H.1    Chen, C.2    Tian, H.3    Li, Y.4
  • 69
    • 79959733948 scopus 로고    scopus 로고
    • A case study on a hybrid wind speed forecasting method using BP neural network
    • [69] Guo, Z., Wu, J., Lu, H., Wang, J., A case study on a hybrid wind speed forecasting method using BP neural network. Knowl-Based Syst 24 (2011), 1048–1056.
    • (2011) Knowl-Based Syst , vol.24 , pp. 1048-1056
    • Guo, Z.1    Wu, J.2    Lu, H.3    Wang, J.4
  • 70
    • 84892441792 scopus 로고    scopus 로고
    • Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting
    • [70] Ren, C., An, N., Wanga, J., Li, L., Hud, B., Shang, D., Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting. Knowl-Based Syst 56 (2014), 226–239.
    • (2014) Knowl-Based Syst , vol.56 , pp. 226-239
    • Ren, C.1    An, N.2    Wanga, J.3    Li, L.4    Hud, B.5    Shang, D.6
  • 71
    • 85151930254 scopus 로고    scopus 로고
    • A wind speed neural model with particle swarm optimization Kalman learning. In: Proceedings of the World automation congress (WAC);. p. 1–5.
    • [71] Alanis AY, Simetti C, Ricalde LJ, Odone F. A wind speed neural model with particle swarm optimization Kalman learning. In: Proceedings of the World automation congress (WAC); 2012. p. 1–5.
    • (2012)
    • Alanis, A.Y.1    Simetti, C.2    Ricalde, L.J.3    Odone, F.4
  • 72
    • 79958272062 scopus 로고    scopus 로고
    • Forecasting of wind speed with least squares support vector machine based on genetic algorithm. In: Proceedings of the international conference on consumer electronics, communications and networks (CECNet);. p. 358–61.
    • [72] Ran L, Yong-qin K, Xiao-qian Z. Forecasting of wind speed with least squares support vector machine based on genetic algorithm. In: Proceedings of the international conference on consumer electronics, communications and networks (CECNet); 2011. p. 358–61.
    • (2011)
    • Ran, L.1    Yong-qin, K.2    Xiao-qian, Z.3
  • 73
    • 85152003000 scopus 로고    scopus 로고
    • Wind speed prediction based on genetic neural network. In: Proceedings of the 4th IEEE conference on industrial electronics and applications (ICIEA);. p. 2448–51.
    • [73] Xingpei L, Yibing L, Weidong X. Wind speed prediction based on genetic neural network. In: Proceedings of the 4th IEEE conference on industrial electronics and applications (ICIEA); 2009. p. 2448–51.
    • (2009)
    • Xingpei, L.1    Yibing, L.2    Weidong, X.3
  • 74
    • 84928984467 scopus 로고    scopus 로고
    • Interval forecasts of a novelty hybrid model for wind speeds
    • [74] Qin, S., Liu, F., Wang, J., Song, Y., Interval forecasts of a novelty hybrid model for wind speeds. Energy Rep 1 (2015), 8–16.
    • (2015) Energy Rep , vol.1 , pp. 8-16
    • Qin, S.1    Liu, F.2    Wang, J.3    Song, Y.4
  • 75
    • 84911940566 scopus 로고    scopus 로고
    • Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China
    • [75] Wang, J., Qin, S., Zhou, Q., Jiang, H., Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China. Renew Energy 76 (2015), 91–101.
    • (2015) Renew Energy , vol.76 , pp. 91-101
    • Wang, J.1    Qin, S.2    Zhou, Q.3    Jiang, H.4
  • 76
    • 0032122184 scopus 로고
    • Short term forecasting of wind speed and related electrical power
    • [76] Alexiadis, M., Dokopoulos, I., Sahsamanoglou, H., Manousardis, I., Short term forecasting of wind speed and related electrical power. Sol Energy 63:1 (1988), 61–68.
    • (1988) Sol Energy , vol.63 , Issue.1 , pp. 61-68
    • Alexiadis, M.1    Dokopoulos, I.2    Sahsamanoglou, H.3    Manousardis, I.4
  • 78
    • 1642373132 scopus 로고    scopus 로고
    • Wind resource assessment of an area using short term data correlated to a long term data set
    • [78] Bechrakis, D.A., Deane, J.P., McKeogh, E.J., Wind resource assessment of an area using short term data correlated to a long term data set. Sol Energy 76:6 (2004), 725–732.
    • (2004) Sol Energy , vol.76 , Issue.6 , pp. 725-732
    • Bechrakis, D.A.1    Deane, J.P.2    McKeogh, E.J.3
  • 79
    • 79751505649 scopus 로고    scopus 로고
    • Bayesian adaptive combination of short-term wind speed forecasts from neural network models
    • [79] Li, G., Shi, J., Zhou, J., Bayesian adaptive combination of short-term wind speed forecasts from neural network models. Renew Energy 36 (2011), 352–359.
    • (2011) Renew Energy , vol.36 , pp. 352-359
    • Li, G.1    Shi, J.2    Zhou, J.3
  • 80
    • 84862729690 scopus 로고    scopus 로고
    • A new strategy for predicting short-term wind speed using soft computing models
    • [80] Haque, A.U., Mandal, P., Kaye, M.E., Meng, J., Chang, L., Senjyu, T., A new strategy for predicting short-term wind speed using soft computing models. Renew Sustain Energy Rev 16:7 (2012), 4563–4573.
    • (2012) Renew Sustain Energy Rev , vol.16 , Issue.7 , pp. 4563-4573
    • Haque, A.U.1    Mandal, P.2    Kaye, M.E.3    Meng, J.4    Chang, L.5    Senjyu, T.6
  • 81
    • 84893650940 scopus 로고    scopus 로고
    • Short-term wind speed forecasting based on a hybrid model
    • [81] Zhang, W., Wang, J., Wang, J., Zhao, Z., Tian, M., Short-term wind speed forecasting based on a hybrid model. Appl Soft Comput 13:7 (2013), 3225–3233.
    • (2013) Appl Soft Comput , vol.13 , Issue.7 , pp. 3225-3233
    • Zhang, W.1    Wang, J.2    Wang, J.3    Zhao, Z.4    Tian, M.5
  • 82
    • 51849142610 scopus 로고    scopus 로고
    • Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks
    • [82] Cadenas, E., Rivera, W., Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks. Renew Energy 34:1 (2009), 274–278.
    • (2009) Renew Energy , vol.34 , Issue.1 , pp. 274-278
    • Cadenas, E.1    Rivera, W.2
  • 83
    • 84857169856 scopus 로고    scopus 로고
    • Neural networks for short term wind speed prediction
    • [83] Sreelakshmi, K., Ramakanthkumar, P., Neural networks for short term wind speed prediction. World Acad Sci Eng Technol 18 (2008), 721–725.
    • (2008) World Acad Sci Eng Technol , vol.18 , pp. 721-725
    • Sreelakshmi, K.1    Ramakanthkumar, P.2
  • 85
    • 79961150966 scopus 로고    scopus 로고
    • Short term wind speed forecasting with ANN in Batman, Turkey
    • [85] Akinci, T.C., Short term wind speed forecasting with ANN in Batman, Turkey. Electron Electr Eng 1:107 (2011), 41–45.
    • (2011) Electron Electr Eng , vol.1 , Issue.107 , pp. 41-45
    • Akinci, T.C.1
  • 86
    • 84894143461 scopus 로고    scopus 로고
    • Short-term wind speed forecasting using feed-forward back-propagation neural network
    • [86] Upadhyay, K.G., Choudhary, A.K., Tripathi, M.M., Short-term wind speed forecasting using feed-forward back-propagation neural network. Int J Eng Sci Technol 3:5 (2011), 107–112.
    • (2011) Int J Eng Sci Technol , vol.3 , Issue.5 , pp. 107-112
    • Upadhyay, K.G.1    Choudhary, A.K.2    Tripathi, M.M.3
  • 87
    • 84894206673 scopus 로고    scopus 로고
    • Performance analysis of artificial and wavelet neural networks for short term wind speed prediction. In: Proceedings of the 8th international conference on electrical and electronics engineering (ELECO),. p. 196–8.
    • [87] Senkal S, Ozgonenel O. Performance analysis of artificial and wavelet neural networks for short term wind speed prediction. In: Proceedings of the 8th international conference on electrical and electronics engineering (ELECO), 2013. p. 196–8.
    • (2013)
    • Senkal, S.1    Ozgonenel, O.2
  • 88
    • 85152000363 scopus 로고    scopus 로고
    • Short-term wind speed prediction by hybridizing global and mesoscale forecasting models with artificial neural networks. In: Eighth International Conference on Hybrid Intelligent Systems. HIS ׳08;. p. 608–12.
    • [88] Sanz SS, Perez AB, Ortiz EG, Portilla-Figueras A, Prieto L, Paredes D, et al. Short-term wind speed prediction by hybridizing global and mesoscale forecasting models with artificial neural networks. In: Eighth International Conference on Hybrid Intelligent Systems. HIS ׳08; 2008. p. 608–12.
    • (2008)
    • Sanz, S.S.1    Perez, A.B.2    Ortiz, E.G.3    Portilla-Figueras, A.4    Prieto, L.5    Paredes, D.6
  • 89
    • 38349108557 scopus 로고    scopus 로고
    • Analysis of wind power generation and prediction using ANN: a case study
    • [89] Mabel, M.C., Ferna´ndez, E., Analysis of wind power generation and prediction using ANN: a case study. Renew Energy 33:5 (2008), 986–992.
    • (2008) Renew Energy , vol.33 , Issue.5 , pp. 986-992
    • Mabel, M.C.1    Ferna´ndez, E.2
  • 90
    • 33847136030 scopus 로고    scopus 로고
    • Wind power estimation using artificial neural network
    • [90] Singh, S., Bhatti, T.S., Kothari, D.P., Wind power estimation using artificial neural network. J Energy Eng 133:1 (2007), 46–52.
    • (2007) J Energy Eng , vol.133 , Issue.1 , pp. 46-52
    • Singh, S.1    Bhatti, T.S.2    Kothari, D.P.3
  • 91
    • 4544381358 scopus 로고    scopus 로고
    • Nonlinear model identification of wind turbine with a neural network
    • [91] Kélouwani, S., Agbossou, K., Nonlinear model identification of wind turbine with a neural network. IEEE Trans Energy Convers 19:39 (2004), 607–612.
    • (2004) IEEE Trans Energy Convers , vol.19 , Issue.39 , pp. 607-612
    • Kélouwani, S.1    Agbossou, K.2
  • 92
    • 3543104882 scopus 로고    scopus 로고
    • Comparative analysis of regression and artificial neural network models for wind turbine power curve estimation
    • [92] Li, S., Wunsch, D.C., O'Hair, E., Giesselmann, M.G., Comparative analysis of regression and artificial neural network models for wind turbine power curve estimation. J Solar Energy Eng 123 (2001), 327–332.
    • (2001) J Solar Energy Eng , vol.123 , pp. 327-332
    • Li, S.1    Wunsch, D.C.2    O'Hair, E.3    Giesselmann, M.G.4
  • 93
    • 84880361986 scopus 로고    scopus 로고
    • A comparative study of optimal hybrid methods for wind power prediction in wind farm of Alberta, Canada
    • [93] Bigdeli, N., Afshar, K., Gazafroudi, A.S., Ramandi, M.Y., A comparative study of optimal hybrid methods for wind power prediction in wind farm of Alberta, Canada. Renew Sustain Energy Rev 27 (2013), 20–29.
    • (2013) Renew Sustain Energy Rev , vol.27 , pp. 20-29
    • Bigdeli, N.1    Afshar, K.2    Gazafroudi, A.S.3    Ramandi, M.Y.4
  • 94
    • 84856532432 scopus 로고    scopus 로고
    • Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China
    • [94] Zhao, Pan, Wang, Jiangfeng, Xia, Junrong, Dai, Yiping, Sheng, Yingxin, Yue, Jie, Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renew Energy 43 (2012), 234–241.
    • (2012) Renew Energy , vol.43 , pp. 234-241
    • Zhao, P.1    Wang, J.2    Xia, J.3    Dai, Y.4    Sheng, Y.5    Yue, J.6
  • 95
    • 84860473037 scopus 로고    scopus 로고
    • Estimation of monthly wind power outputs of WECS with limited record period using artificial neural networks
    • [95] Tu, Yi-Long, Chang, Tsang-Jung, Chen, Cheng-Lung, Chang, Yu-Jung, Estimation of monthly wind power outputs of WECS with limited record period using artificial neural networks. Energy Convers Manag 59 (2012), 114–121.
    • (2012) Energy Convers Manag , vol.59 , pp. 114-121
    • Tu, Y.-L.1    Chang, T.-J.2    Chen, C.-L.3    Chang, Y.-J.4
  • 96
    • 36749022145 scopus 로고    scopus 로고
    • An integration of ANN wind power estimation into unit commitment considering the forecasting uncertainty
    • [96] Methaprayoon, K., Yingvivatanapong, C., Lee, W.J., Liao, J.R., An integration of ANN wind power estimation into unit commitment considering the forecasting uncertainty. IEEE Trans Indus Appl 43:6 (2007), 1441–1448.
    • (2007) IEEE Trans Indus Appl , vol.43 , Issue.6 , pp. 1441-1448
    • Methaprayoon, K.1    Yingvivatanapong, C.2    Lee, W.J.3    Liao, J.R.4
  • 97
    • 78650968145 scopus 로고    scopus 로고
    • Influence of the input layer signals of ANNs on wind power estimation for a target site: a case study
    • [97] Velázquez, S., Carta, J.A., Matías, J.M., Influence of the input layer signals of ANNs on wind power estimation for a target site: a case study. Renew Sustain Energy Rev 15:3 (2011), 1556–1566.
    • (2011) Renew Sustain Energy Rev , vol.15 , Issue.3 , pp. 1556-1566
    • Velázquez, S.1    Carta, J.A.2    Matías, J.M.3
  • 98
    • 84893663314 scopus 로고    scopus 로고
    • Wind energy forecast in complex sites with a hybrid neural network and CFD based method
    • [98] Castellani, F., Burlando, M., Taghizadeh, S., Astolfi, D., Piccioni, E., Wind energy forecast in complex sites with a hybrid neural network and CFD based method. Energy Procedia 45 (2014), 188–197.
    • (2014) Energy Procedia , vol.45 , pp. 188-197
    • Castellani, F.1    Burlando, M.2    Taghizadeh, S.3    Astolfi, D.4    Piccioni, E.5
  • 99
    • 84887788957 scopus 로고    scopus 로고
    • Forecasting wind power in the Mai Liao Wind Farm based on the multi-layer perceptron artificial neural network model with improved simplified swarm optimization
    • [99] Yeh, Wei-Chang, Yeh, Yuan-Ming, Chang, Po-Chun, Ke, Yun-Chin, Chung, Vera, Forecasting wind power in the Mai Liao Wind Farm based on the multi-layer perceptron artificial neural network model with improved simplified swarm optimization. Int J Electr Power Energy Syst 55 (2014), 741–748.
    • (2014) Int J Electr Power Energy Syst , vol.55 , pp. 741-748
    • Yeh, W.-C.1    Yeh, Y.-M.2    Chang, P.-C.3    Ke, Y.-C.4    Chung, V.5
  • 100
    • 85152058667 scopus 로고    scopus 로고
    • Wind power plant prediction by using neural networks. In: Proceedings of the IEEE Energy Conversion Conference and Exposition Raleigh, North Carolina;. p. 15–20.
    • [100] Liu Z, Gao W, Wan YH, Muljadi E. Wind power plant prediction by using neural networks. In: Proceedings of the IEEE Energy Conversion Conference and Exposition Raleigh, North Carolina; 2012. p. 15–20.
    • (2012)
    • Liu, Z.1    Gao, W.2    Wan, Y.H.3    Muljadi, E.4
  • 101
    • 85152039976 scopus 로고    scopus 로고
    • Research on wind power forecasting method using phase space reconstruction and artificial neural network. In: International conference on sustainable power generation and supply, SUPERGEN ׳09;. p. 1–5.
    • [101] Minghao Z, Dongxiang J, Chao L. Research on wind power forecasting method using phase space reconstruction and artificial neural network. In: International conference on sustainable power generation and supply, SUPERGEN ׳09; 2009. p. 1–5.
    • (2009)
    • Minghao, Z.1    Dongxiang, J.2    Chao, L.3
  • 102
    • 78650643189 scopus 로고    scopus 로고
    • An enhanced ANN wind power forecast model based on a fuzzy representation of wind direction. In: Proceedings of the 10th symposium on neural network applications in electrical engineering (NEUREL);. p. 31–6.
    • [102] Gavrilas M, Gavrilas G. An enhanced ANN wind power forecast model based on a fuzzy representation of wind direction. In: Proceedings of the 10th symposium on neural network applications in electrical engineering (NEUREL); 2010. p. 31–6.
    • (2010)
    • Gavrilas, M.1    Gavrilas, G.2
  • 103
    • 85152086127 scopus 로고    scopus 로고
    • Application of neural networks in wind power (generation) prediction. In: Proceedings of the international conference on sustainable power generation and supply SUPERGEN ׳09;. p. 1–5.
    • [103] Mishra AK, Ramesh L. Application of neural networks in wind power (generation) prediction. In: Proceedings of the international conference on sustainable power generation and supply SUPERGEN ׳09; 2009. p. 1–5.
    • (2009)
    • Mishra, A.K.1    Ramesh, L.2
  • 104
    • 85152086782 scopus 로고    scopus 로고
    • Wind power estimation using recurrent neural network technique. In: Proceedings of the IEEE power engineering society conference and exposition in Africa (PowerAfrica);. p. 1–7
    • [104] Olaofe ZO, Folly KA. Wind power estimation using recurrent neural network technique. In: Proceedings of the IEEE power engineering society conference and exposition in Africa (PowerAfrica); 2012. p. 1–7.
    • (2012)
    • Olaofe, Z.O.1    Folly, K.A.2
  • 105
    • 84555170283 scopus 로고    scopus 로고
    • Tabu search algorithm optimized ANN model for wind power prediction with NWP
    • [105] Li, J., Han, S., Liu, Y., Tabu search algorithm optimized ANN model for wind power prediction with NWP. Energy Procedia 12 (2011), 733–740.
    • (2011) Energy Procedia , vol.12 , pp. 733-740
    • Li, J.1    Han, S.2    Liu, Y.3
  • 106
    • 79959375425 scopus 로고    scopus 로고
    • Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods
    • [106] De Giorgi, M.G., Ficarella, A., Tarantino, M., Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods. Energy 36:7 (2011), 3968–3978.
    • (2011) Energy , vol.36 , Issue.7 , pp. 3968-3978
    • De Giorgi, M.G.1    Ficarella, A.2    Tarantino, M.3
  • 107
    • 0035451837 scopus 로고    scopus 로고
    • Using neura networks to estimate wind turbine power generation
    • [107] Li, S., Wunsch, D.C., O'Hair, E., Giesselmann, M.G., Using neura networks to estimate wind turbine power generation. IEEE Trans Energy Convers 16:3 (2001), 276–282.
    • (2001) IEEE Trans Energy Convers , vol.16 , Issue.3 , pp. 276-282
    • Li, S.1    Wunsch, D.C.2    O'Hair, E.3    Giesselmann, M.G.4
  • 108
    • 77949488432 scopus 로고    scopus 로고
    • Wind energy prediction using a two-hidden layer neural network
    • [108] Grassi, G., Vecchio, P., Wind energy prediction using a two-hidden layer neural network. Commun Nonlinear Sci Numer Simulat 15 (2010), 2262–2266.
    • (2010) Commun Nonlinear Sci Numer Simulat , vol.15 , pp. 2262-2266
    • Grassi, G.1    Vecchio, P.2
  • 109
    • 85151969642 scopus 로고    scopus 로고
    • Pourmousavi Kani SA, Riahy GH. A new ANN-based methodology for very short-term wind speed prediction using Markov Chain approach. In: Proceedings of the IEEE Electrical Power & Energy Conference;. p. 1–6
    • [109] Pourmousavi Kani SA, Riahy GH. A new ANN-based methodology for very short-term wind speed prediction using Markov Chain approach. In: Proceedings of the IEEE Electrical Power & Energy Conference; 2008. p. 1–6.
    • (2008)
  • 110
    • 85152025200 scopus 로고    scopus 로고
    • A new integrated approach for very short-term wind speed prediction using linear regression among ANN and Markov Chain. In: Proceeding on international conference on power system analysis, control and optimization, Andhra Pradesh, India; 13–15th March.
    • [110] Pourmousavi Kani SA, Mousavi SM, Kaviani AK, Riahy GH. A new integrated approach for very short-term wind speed prediction using linear regression among ANN and Markov Chain. In: Proceeding on international conference on power system analysis, control and optimization, Andhra Pradesh, India; 13–15th March 2008.
    • (2008)
    • Pourmousavi Kani, S.A.1    Mousavi, S.M.2    Kaviani, A.K.3    Riahy, G.H.4
  • 111
    • 78049513565 scopus 로고    scopus 로고
    • Very short-term wind speed prediction: a new artificial neural network–Markov chain model
    • [111] Pourmousavi Kani, S.A., Ardehali, M.M., Very short-term wind speed prediction: a new artificial neural network–Markov chain model. Energy Convers Manag 52:1 (2011), 738–745.
    • (2011) Energy Convers Manag , vol.52 , Issue.1 , pp. 738-745
    • Pourmousavi Kani, S.A.1    Ardehali, M.M.2
  • 112
    • 85152080481 scopus 로고    scopus 로고
    • A new integrated approach for very short term wind speed prediction using wavelet networks and PSO. In: Proceedings of the international conference on power system (ICPS׳07), Banglore, India; December 12–14,.
    • [112] Safavieh E, Ardakani AJ, Kaviani AK, Pourmousavi SA, Hosseinian SH, Abedi M. A new integrated approach for very short term wind speed prediction using wavelet networks and PSO. In: Proceedings of the international conference on power system (ICPS׳07), Banglore, India; December 12–14, 2007.
    • (2007)
    • Safavieh, E.1    Ardakani, A.J.2    Kaviani, A.K.3    Pourmousavi, S.A.4    Hosseinian, S.H.5    Abedi, M.6
  • 113
    • 29444457388 scopus 로고    scopus 로고
    • Locally recurrent neural networks for long- term wind speed and power prediction
    • [113] Barbounis, T.G., Theocharis, J., Locally recurrent neural networks for long- term wind speed and power prediction. Neurocomputing 69 (2006), 466–496.
    • (2006) Neurocomputing , vol.69 , pp. 466-496
    • Barbounis, T.G.1    Theocharis, J.2
  • 114
    • 84879450713 scopus 로고    scopus 로고
    • Weighted error functions in artificial neural networks for improved wind energy potential estimation
    • [114] Jung, S., Kwon, S.D., Weighted error functions in artificial neural networks for improved wind energy potential estimation. Appl Energy 111 (2013), 778–790.
    • (2013) Appl Energy , vol.111 , pp. 778-790
    • Jung, S.1    Kwon, S.D.2
  • 115
    • 84891696241 scopus 로고    scopus 로고
    • A 5-day wind speed & power forecasts using a layer recurrent neural network (LRNN)
    • [115] Olaofe, Z.O., A 5-day wind speed & power forecasts using a layer recurrent neural network (LRNN). Sustain Energy Technol Assess 6 (2014), 1–24.
    • (2014) Sustain Energy Technol Assess , vol.6 , pp. 1-24
    • Olaofe, Z.O.1
  • 116
    • 79959855553 scopus 로고    scopus 로고
    • Comparison between ANNs and linear MCP algorithms in the long-term estimation of the cost per kWh produced by a wind turbine at a candidate site: a case study in the Canary Islands
    • [116] Velázquez, S., Carta, J.A., Matías, J.M., Comparison between ANNs and linear MCP algorithms in the long-term estimation of the cost per kWh produced by a wind turbine at a candidate site: a case study in the Canary Islands. Appl Energy 88:11 (2011), 3869–3881.
    • (2011) Appl Energy , vol.88 , Issue.11 , pp. 3869-3881
    • Velázquez, S.1    Carta, J.A.2    Matías, J.M.3
  • 118
    • 29244466901 scopus 로고    scopus 로고
    • Neural-network-based sensorless maximum wind energy capture with compensated power coefficient
    • [118] Li, H., Shi, K.L., McLaren, P.G., Neural-network-based sensorless maximum wind energy capture with compensated power coefficient. IEEE Trans Ind Appl 41:6 (2005), 1548–1556.
    • (2005) IEEE Trans Ind Appl , vol.41 , Issue.6 , pp. 1548-1556
    • Li, H.1    Shi, K.L.2    McLaren, P.G.3
  • 119
    • 77954262982 scopus 로고    scopus 로고
    • de Durana JMG, Kremers E. A neural network based wind speed estimator for a wind turbine control. In: Proceedings of the MELECON 15th IEEE Mediterranean Electrotechnical Conference; 2010. p. 1383–8.
    • [119] Barambones O,de Durana JMG, Kremers E. A neural network based wind speed estimator for a wind turbine control. In: Proceedings of the MELECON 2010 15th IEEE Mediterranean Electrotechnical Conference; 2010. p. 1383–8.
    • (2010)
    • Barambones, O.1
  • 120
    • 85151971809 scopus 로고    scopus 로고
    • Control strategy of maximum wind energy capture of direct-drive wind turbine generator based on neural-network. In: Procceedings of the Asia-Pacific power and energy engineering conference (APPEEC);. p. 1–4.
    • [120] Ren YF, Bao GQ. Control strategy of maximum wind energy capture of direct-drive wind turbine generator based on neural-network. In: Procceedings of the Asia-Pacific power and energy engineering conference (APPEEC); 2010. p. 1–4.
    • (2010)
    • Ren, Y.F.1    Bao, G.Q.2
  • 121
    • 84863122660 scopus 로고    scopus 로고
    • New artificial neural network based direct virtual torque control and direct power control for DFIG in wind energy systems. In: Proceedings of the IEEE ninth international conference on power electronics and drive systems (PEDS);. p. 219–27.
    • [121] Dzung PQ, Bao AN, Lee HH. New artificial neural network based direct virtual torque control and direct power control for DFIG in wind energy systems. In: Proceedings of the IEEE ninth international conference on power electronics and drive systems (PEDS); 2011. p. 219–27.
    • (2011)
    • Dzung, P.Q.1    Bao, A.N.2    Lee, H.H.3
  • 122
    • 85151968530 scopus 로고    scopus 로고
    • A robust wind turbine control using a Neural Network based wind speed estimator, The International Joint Conference on Neural Networks (IJCNN), 2010, p.1-8.
    • [122] Barambones O. A robust wind turbine control using a Neural Network based wind speed estimator, The 2010 International Joint Conference on Neural Networks (IJCNN), 2010, p.1-8.
    • (2010)
    • Barambones, O.1
  • 123
    • 51349109189 scopus 로고    scopus 로고
    • Reactive power control of autonomous wind-diesel hybrid power systems using ANN. In: Proceedings of the 8th international power engineering conference (IPEC ). p. 982–87.
    • [123] Bansal RC, Bhatti TS, Kumar V. Reactive power control of autonomous wind-diesel hybrid power systems using ANN. In: Proceedings of the 8th international power engineering conference (IPEC 2007). p. 982–87.
    • (2007)
    • Bansal, R.C.1    Bhatti, T.S.2    Kumar, V.3
  • 124
    • 36248980445 scopus 로고    scopus 로고
    • Modeling and automatic reactive power control of isolated wind-diesel hybrid power systems using ANN
    • [124] Bansal, RC., Modeling and automatic reactive power control of isolated wind-diesel hybrid power systems using ANN. Energy Convers Manag 49 (2008), 357–364.
    • (2008) Energy Convers Manag , vol.49 , pp. 357-364
    • Bansal, R.C.1
  • 125
    • 85151995127 scopus 로고    scopus 로고
    • ANN based reactive power control of an autonomous wind-diesel hybrid power plant using PMIG and SG. In: Power and Energy Systems Conference: Towards Sustainable Energy, PESTSE;.
    • [125] Sharma P, Hoff B, Meena R. ANN based reactive power control of an autonomous wind-diesel hybrid power plant using PMIG and SG. In: Power and Energy Systems Conference: Towards Sustainable Energy, PESTSE; 2014.
    • (2014)
    • Sharma, P.1    Hoff, B.2    Meena, R.3
  • 126
    • 85152028494 scopus 로고    scopus 로고
    • Pitch control of variable speed constant frequency wind turbines based on neural network controller. In: Proceedings of the 30th Chinese control conference (CCC); 22–24 July. p. 5159–62.
    • [126] Qingsong L, Jinping Y. Pitch control of variable speed constant frequency wind turbines based on neural network controller. In: Proceedings of the 30th Chinese control conference (CCC); 22–24 July 2011. p. 5159–62.
    • (2011)
    • Qingsong, L.1    Jinping, Y.2
  • 127
    • 33744537093 scopus 로고    scopus 로고
    • Output power leveling of wind farm using Pitch angle control with fuzzy neural network
    • [127] Senjyu, T, Sakamoto, R, Naomitsu, Urasaki, et al. Output power leveling of wind farm using Pitch angle control with fuzzy neural network. IEEE Trans Energy Convers 21:2 (2006), 467–474.
    • (2006) IEEE Trans Energy Convers , vol.21 , Issue.2 , pp. 467-474
    • Senjyu, T.1    Sakamoto, R.2    Naomitsu, U.3
  • 128
    • 84887556501 scopus 로고    scopus 로고
    • A differential evolution based adaptive neural network pitch controller for a doubly fed wind turbine generator system
    • [128] AHMA, Rahim, Raza, S.A., A differential evolution based adaptive neural network pitch controller for a doubly fed wind turbine generator system. Res J Appl Sci Eng Technol 6:22 (2013), 4271–4280.
    • (2013) Res J Appl Sci Eng Technol , vol.6 , Issue.22 , pp. 4271-4280
    • AHMA, R.1    Raza, S.A.2
  • 129
    • 77949529279 scopus 로고    scopus 로고
    • The estimation of wind turbine pitch angle based on ANN. In: Proceedings of the ICINIS׳09s international conference on intelligent networks and intelligent systems;. p.581-584.
    • [129] Liu Y, Liu S, Guo H, Wang H. The estimation of wind turbine pitch angle based on ANN. In: Proceedings of the ICINIS׳09s international conference on intelligent networks and intelligent systems; 2009. p.581-584.
    • (2009)
    • Liu, Y.1    Liu, S.2    Guo, H.3    Wang, H.4
  • 130
    • 85151917910 scopus 로고    scopus 로고
    • Ho H.S. ANN based pitch angle controller for variable speed variable pitch wind turbine generation system. In: Proccedings of the 6th international forum on strategic technology (IFOST);. p. 443–7.
    • [130] Jialong W., Ho H.S. ANN based pitch angle controller for variable speed variable pitch wind turbine generation system. In: Proccedings of the 6th international forum on strategic technology (IFOST); 2011. p. 443–7.
    • (2011)
    • Jialong, W.1
  • 131
    • 64049096918 scopus 로고    scopus 로고
    • Pitch angle control in wind turbines above the rated wind speed by multi-layer perceptron and radial basis function neural networks
    • [131] Yilmaz, A.S., Özer, Z., Pitch angle control in wind turbines above the rated wind speed by multi-layer perceptron and radial basis function neural networks. Exp Syst Appl 36 (2009), 9767–9775.
    • (2009) Exp Syst Appl , vol.36 , pp. 9767-9775
    • Yilmaz, A.S.1    Özer, Z.2
  • 132
    • 79951529477 scopus 로고    scopus 로고
    • A new Elman neural network-based control algorithm for adjustable-pitch variable-speed wind-energy conversion systems
    • [132] Lin, W.M., Hong, C.M., A new Elman neural network-based control algorithm for adjustable-pitch variable-speed wind-energy conversion systems. IEEE Trans Power Electr 26:2 (2011), 473–481.
    • (2011) IEEE Trans Power Electr , vol.26 , Issue.2 , pp. 473-481
    • Lin, W.M.1    Hong, C.M.2
  • 133
    • 85028096755 scopus 로고    scopus 로고
    • RBF neural network based PI pitch controller for a class of 5-MW wind turbines using particle swarm optimization algorithm
    • [133] Iman, P., Reza, S., Mansour, S., RBF neural network based PI pitch controller for a class of 5-MW wind turbines using particle swarm optimization algorithm. ISA Trans 51:5 (2012), 641–648.
    • (2012) ISA Trans , vol.51 , Issue.5 , pp. 641-648
    • Iman, P.1    Reza, S.2    Mansour, S.3
  • 134
    • 27744492112 scopus 로고    scopus 로고
    • Application of neural network controller for maximum power extraction of a grid-connected wind turbine system
    • [134] Ro, K., Choi, H., Application of neural network controller for maximum power extraction of a grid-connected wind turbine system. Electr Eng 88:1 (2005), 45–53.
    • (2005) Electr Eng , vol.88 , Issue.1 , pp. 45-53
    • Ro, K.1    Choi, H.2
  • 135
    • 78650208825 scopus 로고    scopus 로고
    • Neural MPPT control of wind generators with induction machines without speed sensors
    • [135] Pucci, M., Cirrincione, M., Neural MPPT control of wind generators with induction machines without speed sensors. IEEE Trans Ind Elec 58:1 (2011), 37–47.
    • (2011) IEEE Trans Ind Elec , vol.58 , Issue.1 , pp. 37-47
    • Pucci, M.1    Cirrincione, M.2
  • 136
    • 85151922390 scopus 로고    scopus 로고
    • A neural network based MPPT controller for variable speed wind energy conversion systems. In: Proceedings of the 8th mediterranean conference on power generation, transmission, distribution and energy conversion (MEDPOWER ); 2012, p. 1–6.
    • [136] Mesemanolis A, Mademlis C. A neural network based MPPT controller for variable speed wind energy conversion systems. In: Proceedings of the 8th mediterranean conference on power generation, transmission, distribution and energy conversion (MEDPOWER 2012); 2012, p. 1–6.
    • (2012)
    • Mesemanolis, A.1    Mademlis, C.2
  • 137
    • 85151944020 scopus 로고    scopus 로고
    • Multi-layer neural network for sensorless MPPT control for wind energy conversion system using doubly fed twin stator induction gnenerator. In: Proceedings of the 8th international multi-conference on systems, signals and devices (SSD);. p. 1–7.
    • [137] Nouali S, Ouali A. Multi-layer neural network for sensorless MPPT control for wind energy conversion system using doubly fed twin stator induction gnenerator. In: Proceedings of the 8th international multi-conference on systems, signals and devices (SSD); 2011. p. 1–7.
    • (2011)
    • Nouali, S.1    Ouali, A.2
  • 138
    • 84895920055 scopus 로고    scopus 로고
    • Improving efficiency of two-type maximum power point tracking methods of tip-speed ratio and optimum torque in wind turbine system using a quantum neural network
    • [138] Ganjefar, S., Ghassemi, A.A., Ahmadi, M.M., Improving efficiency of two-type maximum power point tracking methods of tip-speed ratio and optimum torque in wind turbine system using a quantum neural network. Energy 67 (2014), 444–453.
    • (2014) Energy , vol.67 , pp. 444-453
    • Ganjefar, S.1    Ghassemi, A.A.2    Ahmadi, M.M.3
  • 139
    • 0036629144 scopus 로고    scopus 로고
    • Neural network controller for a permanent magnet generator applied in a wind energy conversion system
    • [139] Eskander, M.N., Neural network controller for a permanent magnet generator applied in a wind energy conversion system. Renew Energy 26 (2002), 463–477.
    • (2002) Renew Energy , vol.26 , pp. 463-477
    • Eskander, M.N.1
  • 140
    • 85151966107 scopus 로고    scopus 로고
    • Sensorless control of PMSG in WECS using artificial neural network. SSD ׳09. In: Proceedings of the 6th international multi-conference on systems, signals and devices;. p.1–8.
    • [140] Brahmi J, Krichen L, Ouali A. Sensorless control of PMSG in WECS using artificial neural network. SSD ׳09. In: Proceedings of the 6th international multi-conference on systems, signals and devices; 2009. p.1–8.
    • (2009)
    • Brahmi, J.1    Krichen, L.2    Ouali, A.3
  • 141
    • 84855515563 scopus 로고    scopus 로고
    • Speed control of grid-connected switched reluctance generator driven by variable speed wind turbine using adaptive neural network controller
    • [141] Hasanien, H.M., Muyeen, S.M., Speed control of grid-connected switched reluctance generator driven by variable speed wind turbine using adaptive neural network controller. Electric Power Syst Res 84:1 (2012), 206–213.
    • (2012) Electric Power Syst Res , vol.84 , Issue.1 , pp. 206-213
    • Hasanien, H.M.1    Muyeen, S.M.2
  • 142
    • 84860895294 scopus 로고    scopus 로고
    • A novel method of maximum power point tracking for a SRG based wind power generation system using
    • [142] Mohseni, M., Niassati, N., Tajik, S., Afjei, E., A novel method of maximum power point tracking for a SRG based wind power generation system using. Proc. 3rd Power Electron Drive Syst Technol, 2012, 330–335.
    • (2012) Proc. 3rd Power Electron Drive Syst Technol , pp. 330-335
    • Mohseni, M.1    Niassati, N.2    Tajik, S.3    Afjei, E.4
  • 143
    • 85151946271 scopus 로고    scopus 로고
    • Neural network theory based voltage and frequency controller for standalone wind energy conversion system. In: Proceedings of the joint international conference on power electronics, drives and energy systems (PEDES) & Power India; 2010. p. 1–6.
    • [143] Sheeja V, Jayaprakash P, Singh B, Uma R. Neural network theory based voltage and frequency controller for standalone wind energy conversion system. In: Proceedings of the joint international conference on power electronics, drives and energy systems (PEDES) & 2010 Power India; 2010. p. 1–6.
    • (2010)
    • Sheeja, V.1    Jayaprakash, P.2    Singh, B.3    Uma, R.4
  • 144
    • 84867661814 scopus 로고    scopus 로고
    • Reduction of frequency fluctuation for wind farm connected power systems by an adaptive artificial neural network controlled energy capacitor system
    • [144] Muyeen, S.M., Hasanien, H.M., Tamura, J., Reduction of frequency fluctuation for wind farm connected power systems by an adaptive artificial neural network controlled energy capacitor system. Renew Power Gen IET 6:4 (2012), 226–235.
    • (2012) Renew Power Gen IET , vol.6 , Issue.4 , pp. 226-235
    • Muyeen, S.M.1    Hasanien, H.M.2    Tamura, J.3
  • 145
    • 84876860940 scopus 로고    scopus 로고
    • Recurrent modified Elman neural network control of PM synchronous generator system using wind turbine emulator of PM synchronous servo motor drive
    • [145] Lin, C.H., Recurrent modified Elman neural network control of PM synchronous generator system using wind turbine emulator of PM synchronous servo motor drive. Int J Electr Power Energy Syst 52 (2013), 143–160.
    • (2013) Int J Electr Power Energy Syst , vol.52 , pp. 143-160
    • Lin, C.H.1
  • 146
    • 84897901552 scopus 로고    scopus 로고
    • Optimal control for variable-speed wind generation systems using general regression neural network
    • [146] Honga, C.M., Chengb, F.S., Chena, C.H., Optimal control for variable-speed wind generation systems using general regression neural network. Int J Electr Power Energy Syst 60 (2014), 14–23.
    • (2014) Int J Electr Power Energy Syst , vol.60 , pp. 14-23
    • Honga, C.M.1    Chengb, F.S.2    Chena, C.H.3
  • 147
    • 84880742738 scopus 로고    scopus 로고
    • Neural networks approach for wind-solar energy system with complex networks. In: Proceedings of the IEEE 10th international conference on power electronics and drive systems (PEDS);. p. 1–5.
    • [147] Kimura K, Kimura T. Neural networks approach for wind-solar energy system with complex networks. In: Proceedings of the IEEE 10th international conference on power electronics and drive systems (PEDS); 2013. p. 1–5.
    • (2013)
    • Kimura, K.1    Kimura, T.2
  • 148
    • 80054743912 scopus 로고    scopus 로고
    • Optimal operation via a recurrent neural network of a wind-solar energy system
    • [148] Gamez, M.E., Sanchez, E.N., Ricalde, L.J., Optimal operation via a recurrent neural network of a wind-solar energy system. Proc Int Joint Conf Neural Netw, 69(026113), 2011.
    • (2011) Proc Int Joint Conf Neural Netw , vol.69 , Issue.26113
    • Gamez, M.E.1    Sanchez, E.N.2    Ricalde, L.J.3
  • 149
    • 85152085996 scopus 로고    scopus 로고
    • ANN-based adaptive PI control for wind turbine with doubly fed induction generator. In: Proccedings of the North American power symposium (NAPS);. p. 1–6.
    • [149] Dong B, Asgarpoor S, Qiao W. ANN-based adaptive PI control for wind turbine with doubly fed induction generator. In: Proccedings of the North American power symposium (NAPS); 2011. p. 1–6.
    • (2011)
    • Dong, B.1    Asgarpoor, S.2    Qiao, W.3
  • 150
    • 33745927429 scopus 로고    scopus 로고
    • Assessment of optimum tip speed ratio in wind turbines using artificial neural networks
    • [150] Yurdusev, M.A., Ata, R., Çetin, N.S., Assessment of optimum tip speed ratio in wind turbines using artificial neural networks. Energy 1:12 (2006), 1817–1825.
    • (2006) Energy , vol.1 , Issue.12 , pp. 1817-1825
    • Yurdusev, M.A.1    Ata, R.2    Çetin, N.S.3
  • 151
    • 77950298459 scopus 로고    scopus 로고
    • An adaptive neuro-fuzzy inference system approach for prediction of tip speed ratio in wind turbines
    • [151] Ata, R., Kocyigit, Y., An adaptive neuro-fuzzy inference system approach for prediction of tip speed ratio in wind turbines. Exp Syst Appl 37:7 (2010), 5454–5460.
    • (2010) Exp Syst Appl , vol.37 , Issue.7 , pp. 5454-5460
    • Ata, R.1    Kocyigit, Y.2
  • 152
    • 67649367526 scopus 로고    scopus 로고
    • Modeling and simulation of wind turbine Savonius rotors using artificial neural networks for estimation of the power ratio and torque
    • [152] Sargolzaei, J, Kianifar, A., Modeling and simulation of wind turbine Savonius rotors using artificial neural networks for estimation of the power ratio and torque. Simul Model Pract Theory 17:7 (2009), 1290–1298.
    • (2009) Simul Model Pract Theory , vol.17 , Issue.7 , pp. 1290-1298
    • Sargolzaei, J.1    Kianifar, A.2
  • 153
    • 84890864866 scopus 로고    scopus 로고
    • An approach for self evolving neural network based algorithm for fault prognosis in wind turbine
    • [153] Bangalore, P., Tjernberg, L.B., An approach for self evolving neural network based algorithm for fault prognosis in wind turbine. IEEE Grenoble PowerTech (POWERTECH), 2013, 1–6.
    • (2013) IEEE Grenoble PowerTech (POWERTECH) , pp. 1-6
    • Bangalore, P.1    Tjernberg, L.B.2
  • 154
    • 51849140086 scopus 로고    scopus 로고
    • The intelligent fault diagnosis of wind turbine gearbox based on artificial neural network. In: Proceedings international conference on condition monitoring and diagnosis;. p. 1327–30.
    • [154] Yang S, Li W, Wang C. The intelligent fault diagnosis of wind turbine gearbox based on artificial neural network. In: Proceedings international conference on condition monitoring and diagnosis; 2008. p. 1327–30.
    • (2008)
    • Yang, S.1    Li, W.2    Wang, C.3
  • 155
    • 77958138723 scopus 로고    scopus 로고
    • Research on fault diagnosis of wind turbine control system based on Artificial Neural Network. In: Proceedings of the 8th world congress on intelligent control and automation (WCICA);, p. 4875–9.
    • [155] Guolian H, Pan J, Zhentao W, Jianhua Z. Research on fault diagnosis of wind turbine control system based on Artificial Neural Network. In: Proceedings of the 8th world congress on intelligent control and automation (WCICA); 2010, p. 4875–9.
    • (2010)
    • Guolian, H.1    Pan, J.2    Zhentao, W.3    Jianhua, Z.4
  • 156
    • 84891747988 scopus 로고    scopus 로고
    • On damage diagnosis for a wind turbine blade using pattern recognition
    • [156] Dervilis, N, Choi, M, Taylor, SG, Barthorpe, RJ, Park, G, Farrar, CR, et al. On damage diagnosis for a wind turbine blade using pattern recognition. J Sound Vibr 333:6 (2014), 1833–1850.
    • (2014) J Sound Vibr , vol.333 , Issue.6 , pp. 1833-1850
    • Dervilis, N.1    Choi, M.2    Taylor, S.G.3    Barthorpe, R.J.4    Park, G.5    Farrar, C.R.6
  • 157
    • 84863344832 scopus 로고    scopus 로고
    • Fault diagnosis of frequency converter in wind power system based on SOM neural network
    • [157] You, X., Zhang, W., Fault diagnosis of frequency converter in wind power system based on SOM neural network. Procedia Eng 29 (2012), 3132–3136.
    • (2012) Procedia Eng , vol.29 , pp. 3132-3136
    • You, X.1    Zhang, W.2
  • 158
    • 79953861150 scopus 로고    scopus 로고
    • Comparative analysis of neural network and regression based condition monitoring approaches for wind turbine fault detection
    • [158] Schlechtingen, M., Santos, I.F., Comparative analysis of neural network and regression based condition monitoring approaches for wind turbine fault detection. Mech Syst Signal Process 25:5 (2011), 1849–1875.
    • (2011) Mech Syst Signal Process , vol.25 , Issue.5 , pp. 1849-1875
    • Schlechtingen, M.1    Santos, I.F.2
  • 159
    • 0032632470 scopus 로고    scopus 로고
    • Neural network modeling of the gust effects on a grid-interactive wind energy conversion system with battery storage
    • [159] Giraud, F., Salameh, Z.M., Neural network modeling of the gust effects on a grid-interactive wind energy conversion system with battery storage. Electric Power Syst Res 50 (1999), 155–161.
    • (1999) Electric Power Syst Res , vol.50 , pp. 155-161
    • Giraud, F.1    Salameh, Z.M.2
  • 160
    • 85151948018 scopus 로고    scopus 로고
    • Wind generator stability enhancement by using an adaptive artificial neural network-controlled superconducting magnetic energy storage. In: Proceedings of the 15th international conference on electrical machines and systems (ICEMS);, p. 1–6.
    • [160] Hasanien HM, Ali SQ, Muyeen SM. Wind generator stability enhancement by using an adaptive artificial neural network-controlled superconducting magnetic energy storage. In: Proceedings of the 15th international conference on electrical machines and systems (ICEMS); 2012, p. 1–6.
    • (2012)
    • Hasanien, H.M.1    Ali, S.Q.2    Muyeen, S.M.3
  • 161
    • 84888863925 scopus 로고    scopus 로고
    • Transient stability enhancement of wind farms connected to a multi-machine power system by using an adaptive ANN-controlled SMES
    • [161] Muyeen, S.M., Hasanien, H.M., Al-Durra, A., Transient stability enhancement of wind farms connected to a multi-machine power system by using an adaptive ANN-controlled SMES. Energy Convers Manag 78 (2014), 412–420.
    • (2014) Energy Convers Manag , vol.78 , pp. 412-420
    • Muyeen, S.M.1    Hasanien, H.M.2    Al-Durra, A.3
  • 162
    • 85152056362 scopus 로고    scopus 로고
    • Analysis of the influence of control parameters on wind farm output: A sensitivity analysis using ANN modeling. In: Proceedings of the international conference on power electronics, drives and energy systems, PEDES ׳06, Art No. 4147996;
    • [162] Fernandez E, Mabel MC. Analysis of the influence of control parameters on wind farm output: A sensitivity analysis using ANN modeling. In: Proceedings of the international conference on power electronics, drives and energy systems, PEDES ׳06, Art No. 4147996; 2006.
    • (2006)
    • Fernandez, E.1    Mabel, M.C.2
  • 164
    • 84897581376 scopus 로고    scopus 로고
    • Performance analysis of modeling framework for prediction in wind farms employing artificial neural networks
    • [164] Gnana Sheela, K., Deepa, S.N., Performance analysis of modeling framework for prediction in wind farms employing artificial neural networks. Soft Comput, 18(3), 2014, 10.1007/s00500-013-1084-9.
    • (2014) Soft Comput , vol.18 , Issue.3
    • Gnana Sheela, K.1    Deepa, S.N.2
  • 165
    • 0029306750 scopus 로고
    • Learning without local minima in radial basis function networks
    • [165] Bianchini, M., Frasconi, P., Gori, M., Learning without local minima in radial basis function networks. IEEE Trans Neural Netw 6:3 (1995), 749–756.
    • (1995) IEEE Trans Neural Netw , vol.6 , Issue.3 , pp. 749-756
    • Bianchini, M.1    Frasconi, P.2    Gori, M.3
  • 166
    • 0038105929 scopus 로고    scopus 로고
    • Radial basis function neural network for modeling rating curves
    • [166] Sudheer, K.P., Jain, S.K., Radial basis function neural network for modeling rating curves. Hydrol Eng 8:3 (2004), 161–164.
    • (2004) Hydrol Eng , vol.8 , Issue.3 , pp. 161-164
    • Sudheer, K.P.1    Jain, S.K.2
  • 167
    • 1642400386 scopus 로고    scopus 로고
    • Methods to improve prediction performance of ANN models
    • [167] Yin, C, Rosendahl, L, Luo, Z., Methods to improve prediction performance of ANN models. Simul Model Pract Theory 11 (2003), 211–222.
    • (2003) Simul Model Pract Theory , vol.11 , pp. 211-222
    • Yin, C.1    Rosendahl, L.2    Luo, Z.3
  • 168
    • 85151956770 scopus 로고    scopus 로고
    • Peqas Lopes JA., ANN design has been used for fast security evaluation of interconnected systems with large wind power production. In: 9th International conference on probabilistic methods applied to power systems KTH, Stockholm, Sweden; June 11–15,.
    • [168] Vasconcelos H, Peqas Lopes JA., ANN design has been used for fast security evaluation of interconnected systems with large wind power production. In: 9th International conference on probabilistic methods applied to power systems KTH, Stockholm, Sweden; June 11–15, 2006.
    • (2006)
    • Vasconcelos, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.