메뉴 건너뛰기




Volumn 136, Issue , 2015, Pages 201-210

A selection of time series models for short- to medium-term wind power forecasting

Author keywords

Forecasting; GWPPT; Mycielski algorithm; Prediction; Wind energy; Wind power; WPPT

Indexed keywords

FORECASTING; GENETIC ALGORITHMS; REGRESSION ANALYSIS; TIME SERIES; WIND; WIND POWER;

EID: 84949115095     PISSN: 01676105     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jweia.2014.11.014     Document Type: Article
Times cited : (46)

References (24)
  • 1
    • 84949117922 scopus 로고    scopus 로고
    • Periodic and Long Range Dependent Models for High Frequency Wind Speed Data
    • European University Viadrina Frankfurt (Oder), Department of Business Administration and Economics. Discussion Paper No. 357.
    • Ambach, D., Schmid, W., 2014. Periodic and Long Range Dependent Models for High Frequency Wind Speed Data. European University Viadrina Frankfurt (Oder), Department of Business Administration and Economics. Discussion Paper No. 357.
    • (2014)
    • Ambach, D.1    Schmid, W.2
  • 3
    • 84905743688 scopus 로고    scopus 로고
    • Accurate medium-term wind power forecasting in a censored classification framework
    • Croonenbroeck C., Dahl C.M. Accurate medium-term wind power forecasting in a censored classification framework. Energy 2014, 73:221-232.
    • (2014) Energy , vol.73 , pp. 221-232
    • Croonenbroeck, C.1    Dahl, C.M.2
  • 4
    • 0001040035 scopus 로고
    • A pseudorandom sequence-how random is it?
    • Ehrenfeucht A., Mycielski J. A pseudorandom sequence-how random is it?. Am. Math. Mon. 1992, 99:373-375.
    • (1992) Am. Math. Mon. , vol.99 , pp. 373-375
    • Ehrenfeucht, A.1    Mycielski, J.2
  • 5
    • 14344250134 scopus 로고    scopus 로고
    • Online-monitoring and prediction of wind power in german transmission system operation centres
    • In: Proceedings of the first IEA Joint Action Symposium on Wind Forecast Techniques, Norrköping, Sweden
    • Ernst, B., Rohrig, K., 2002. Online-monitoring and prediction of wind power in german transmission system operation centres. In: Proceedings of the first IEA Joint Action Symposium on Wind Forecast Techniques, Norrköping, Sweden, pp. 1062-1065.
    • (2002) , pp. 1062-1065
    • Ernst, B.1    Rohrig, K.2
  • 7
    • 84865982614 scopus 로고    scopus 로고
    • The effect of different state sizes on Mycielski approach for wind speed prediction
    • Gan M., Ding M., Huang Y.z., Dong X.p. The effect of different state sizes on Mycielski approach for wind speed prediction. J. Wind Eng. Ind. Aerodyn. 2012, 109:89-93.
    • (2012) J. Wind Eng. Ind. Aerodyn. , vol.109 , pp. 89-93
    • Gan, M.1    Ding, M.2    Huang, Y.3    Dong, X.4
  • 8
    • 13844260429 scopus 로고    scopus 로고
    • The State-Of-The-Art in Short-Term Prediction of Wind Power
    • Technical Report. ANEMOS.plus, Risø DTU, Wind Energy Division.
    • Giebel, G., Brownsword, R., Kariniotakis, G., Denhard, M., Draxl, C., 2011. The State-Of-The-Art in Short-Term Prediction of Wind Power. Technical Report. ANEMOS.plus, Risø DTU, Wind Energy Division.
    • (2011)
    • Giebel, G.1    Brownsword, R.2    Kariniotakis, G.3    Denhard, M.4    Draxl, C.5
  • 9
    • 77952557101 scopus 로고    scopus 로고
    • Powering up with space-time wind forecasting
    • Hering A.S., Genton M.G. Powering up with space-time wind forecasting. J. Am. Stat. Assoc. 2010, 105:92-104.
    • (2010) J. Am. Stat. Assoc. , vol.105 , pp. 92-104
    • Hering, A.S.1    Genton, M.G.2
  • 10
    • 64649107427 scopus 로고    scopus 로고
    • Mycielski approach for wind speed prediction
    • Hocaoglu F., Fidan M., Gerek m. Mycielski approach for wind speed prediction. Energy Convers. Manag. 2009, 50:1436-1443.
    • (2009) Energy Convers. Manag. , vol.50 , pp. 1436-1443
    • Hocaoglu, F.1    Fidan, M.2    Gerek, M.3
  • 11
    • 77956037312 scopus 로고    scopus 로고
    • Adaptive gaussian process for short-term wind speed forecasting
    • In: Proceedings of the 2010 Conference on ECAI
    • Jiang, X., Dong, B., Xie, L., Sweeney, L., 2010. Adaptive gaussian process for short-term wind speed forecasting. In: Proceedings of the 2010 Conference on ECAI, pp. 661-666.
    • (2010) , pp. 661-666
    • Jiang, X.1    Dong, B.2    Xie, L.3    Sweeney, L.4
  • 13
    • 84880725572 scopus 로고    scopus 로고
    • Wind prediction in malaysia. Power, Control and Optimization
    • Lecture Notes in Electrical Engineering
    • Lee, S.W., Kok, B.C., Goh, K.C., Goh, H.H., 2013. Wind prediction in malaysia. Power, Control and Optimization, Lecture Notes in Electrical Engineering, pp. 135-147.
    • (2013) , pp. 135-147
    • Lee, S.W.1    Kok, B.C.2    Goh, K.C.3    Goh, H.H.4
  • 16
    • 0000570382 scopus 로고
    • On estimating regression
    • Nadaraya E.A. On estimating regression. Theory Probab. Appl. 1964, 9:141-142.
    • (1964) Theory Probab. Appl. , vol.9 , pp. 141-142
    • Nadaraya, E.A.1
  • 17
    • 84875356226 scopus 로고    scopus 로고
    • Improvement and Automation of Tools for Short Term Wind Power Forecasting
    • Technical Report. Scientific Proceedings of the European Wind Energy Conference & Exhibition, Milan, Italy.
    • Nielsen, H.A., Pinson, P., Christiansen, L.E., Nielsen, T.S., Madsen, H., Badger, J., Giebel, G., Ravn, H.F., 2007. Improvement and Automation of Tools for Short Term Wind Power Forecasting. Technical Report. Scientific Proceedings of the European Wind Energy Conference & Exhibition, Milan, Italy.
    • (2007)
    • Nielsen, H.A.1    Pinson, P.2    Christiansen, L.E.3    Nielsen, T.S.4    Madsen, H.5    Badger, J.6    Giebel, G.7    Ravn, H.F.8
  • 18
    • 78049513565 scopus 로고    scopus 로고
    • Very short-term wind speed prediction. a new artificial neural network-Markov chain model
    • Pourmousavi Kani S., Ardehali M. Very short-term wind speed prediction. a new artificial neural network-Markov chain model. Energy Convers. Manag. 2011, 52:738-745.
    • (2011) Energy Convers. Manag. , vol.52 , pp. 738-745
    • Pourmousavi Kani, S.1    Ardehali, M.2
  • 20
    • 78650045524 scopus 로고    scopus 로고
    • A review of wind power and wind speed forecasting methods with different time horizons
    • In: North American Power Symposium (NAPS)
    • Soman, S.S., Zareipour, H., Malik, O., Mandal, P., 2010. A review of wind power and wind speed forecasting methods with different time horizons. In: North American Power Symposium (NAPS), pp. 1-8.
    • (2010) , pp. 1-8
    • Soman, S.S.1    Zareipour, H.2    Malik, O.3    Mandal, P.4
  • 21
    • 70049094192 scopus 로고    scopus 로고
    • Wind power density forecasting using ensemble predictions and time series models
    • Taylor J.W., McSharry P.E., Buizza R. Wind power density forecasting using ensemble predictions and time series models. IEEE Trans. Energy Convers. 2009, 24:775-782.
    • (2009) IEEE Trans. Energy Convers. , vol.24 , pp. 775-782
    • Taylor, J.W.1    McSharry, P.E.2    Buizza, R.3
  • 22
    • 0001762424 scopus 로고
    • Smooth regression analysis
    • Watson G.S. Smooth regression analysis. Sankhya: Indian J. Stat. 1964, 26:359-372.
    • (1964) Sankhya: Indian J. Stat. , vol.26 , pp. 359-372
    • Watson, G.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.