-
1
-
-
79961126223
-
Current methods and advances in forecasting of wind power generation
-
Foley A.M., Leahy P.G., Marvuglia A., McKeogh E.J. Current methods and advances in forecasting of wind power generation. Renew Energy 2012, 37(1):1-8.
-
(2012)
Renew Energy
, vol.37
, Issue.1
, pp. 1-8
-
-
Foley, A.M.1
Leahy, P.G.2
Marvuglia, A.3
McKeogh, E.J.4
-
2
-
-
84868008155
-
Echo state network with wavelet in load forecasting
-
Niu D., Ji L., Wang Y.L., Liu D. Echo state network with wavelet in load forecasting. Kybernetes 2012, 41(10):1557-1570.
-
(2012)
Kybernetes
, vol.41
, Issue.10
, pp. 1557-1570
-
-
Niu, D.1
Ji, L.2
Wang, Y.L.3
Liu, D.4
-
3
-
-
33748316563
-
Study of forecasting solar irradiance using neural networks with preprocessing sample data by wavelet analysis
-
Cao J.C., Cao S.H. Study of forecasting solar irradiance using neural networks with preprocessing sample data by wavelet analysis. Energy 2006, 31(15):3435-3445.
-
(2006)
Energy
, vol.31
, Issue.15
, pp. 3435-3445
-
-
Cao, J.C.1
Cao, S.H.2
-
4
-
-
78649450621
-
Short-term wind power forecasting in Portugal by neural networks and wavelet transform
-
Catal O J.P.S., Pousinho H.M.I., Mendes V.M.F. Short-term wind power forecasting in Portugal by neural networks and wavelet transform. Renew Energy 2011, 36(4):1245-1251.
-
(2011)
Renew Energy
, vol.36
, Issue.4
, pp. 1245-1251
-
-
Catal, O.J.P.S.1
Pousinho, H.M.I.2
Mendes, V.M.F.3
-
5
-
-
31744444183
-
A comparison of univariate methods for forecasting electricity demand up to a day ahead
-
Taylor J.W., de Menezes L.M., McSharry P.E. A comparison of univariate methods for forecasting electricity demand up to a day ahead. Int J Forecast 2006, 22(1):1-16.
-
(2006)
Int J Forecast
, vol.22
, Issue.1
, pp. 1-16
-
-
Taylor, J.W.1
de Menezes, L.M.2
McSharry, P.E.3
-
6
-
-
84898966331
-
Wind forecasting using principal component analysis
-
Skittides C., Früh W. Wind forecasting using principal component analysis. Renew Energy 2014, 69(0):365-374.
-
(2014)
Renew Energy
, vol.69
, pp. 365-374
-
-
Skittides, C.1
Früh, W.2
-
7
-
-
77949261563
-
A soft computing system for day-ahead electricity price forecasting
-
Niu D., Liu D., Wu D.D. A soft computing system for day-ahead electricity price forecasting. Appl Soft Comput 2010, 10(3):868-875.
-
(2010)
Appl Soft Comput
, vol.10
, Issue.3
, pp. 868-875
-
-
Niu, D.1
Liu, D.2
Wu, D.D.3
-
8
-
-
80052922550
-
A SOM-based hybrid linear-neural model for short-term load forecasting
-
Yadav V., Srinivasan D. A SOM-based hybrid linear-neural model for short-term load forecasting. Neurocomputing 2011, 74(17):2874-2885.
-
(2011)
Neurocomputing
, vol.74
, Issue.17
, pp. 2874-2885
-
-
Yadav, V.1
Srinivasan, D.2
-
9
-
-
79952364639
-
Integrating spectral clustering with wavelet based kernel partial least square regressions for financial modeling and forecasting
-
Huang S. Integrating spectral clustering with wavelet based kernel partial least square regressions for financial modeling and forecasting. Appl Math Comput 2011, 217(15):6755-6764.
-
(2011)
Appl Math Comput
, vol.217
, Issue.15
, pp. 6755-6764
-
-
Huang, S.1
-
10
-
-
79953034728
-
Sparse kernel spectral clustering models for large-scale data analysis
-
Alzate C., Suykens J.A.K. Sparse kernel spectral clustering models for large-scale data analysis. Neurocomputing 2011, 74(9):1382-1390.
-
(2011)
Neurocomputing
, vol.74
, Issue.9
, pp. 1382-1390
-
-
Alzate, C.1
Suykens, J.A.K.2
-
11
-
-
79751505649
-
Bayesian adaptive combination of short-term wind speed forecasts from neural network models
-
Li G., Shi J., Zhou J. Bayesian adaptive combination of short-term wind speed forecasts from neural network models. Renew Energy 2011, 36(1):352-359.
-
(2011)
Renew Energy
, vol.36
, Issue.1
, pp. 352-359
-
-
Li, G.1
Shi, J.2
Zhou, J.3
-
12
-
-
84884126948
-
Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm
-
Liu D., Niu D., Wang H., Fan L. Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm. Renew Energy 2014, 62(0):592-597.
-
(2014)
Renew Energy
, vol.62
, pp. 592-597
-
-
Liu, D.1
Niu, D.2
Wang, H.3
Fan, L.4
-
13
-
-
58949103845
-
Day-ahead wind speed forecasting using f-ARIMA models
-
Kavasseri R.G., Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renew Energy 2009, 34(5):1388-1393.
-
(2009)
Renew Energy
, vol.34
, Issue.5
, pp. 1388-1393
-
-
Kavasseri, R.G.1
Seetharaman, K.2
-
14
-
-
1842421269
-
Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication
-
Jaeger H., Haas H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 2004, 304(5667):78-80.
-
(2004)
Science
, vol.304
, Issue.5667
, pp. 78-80
-
-
Jaeger, H.1
Haas, H.2
-
15
-
-
84880698919
-
Short-term electric load and temperature forecasting using wavelet echo state networks with neural reconstruction
-
Deihimi A., Orang O., Showkati H. Short-term electric load and temperature forecasting using wavelet echo state networks with neural reconstruction. Energy 2013, 57(0):382-401.
-
(2013)
Energy
, vol.57
, pp. 382-401
-
-
Deihimi, A.1
Orang, O.2
Showkati, H.3
-
16
-
-
84865776910
-
Sequential reconstruction of driving-forces from nonlinear nonstationary dynamics
-
Güntürkün U. Sequential reconstruction of driving-forces from nonlinear nonstationary dynamics. Phys D Nonlinear Phenom 2010, 239(13):1095-1107.
-
(2010)
Phys D Nonlinear Phenom
, vol.239
, Issue.13
, pp. 1095-1107
-
-
Güntürkün, U.1
-
17
-
-
58349117010
-
Short-term stock price prediction based on echo state networks
-
Lin X., Yang Z., Song Y. Short-term stock price prediction based on echo state networks. Expert Syst Appl 2009, 36(3, Part 2):7313-7317.
-
(2009)
Expert Syst Appl
, vol.36
, Issue.3
, pp. 7313-7317
-
-
Lin, X.1
Yang, Z.2
Song, Y.3
-
18
-
-
84873988265
-
Time series classification for the prediction of dialysis in critically ill patients using echo statenetworks
-
Ongenae F., Van Looy S., Verstraeten D., Verplancke T., Benoit D., De Turck F., et al. Time series classification for the prediction of dialysis in critically ill patients using echo statenetworks. Eng Appl Artif Intell 2013, 26(3):984-996.
-
(2013)
Eng Appl Artif Intell
, vol.26
, Issue.3
, pp. 984-996
-
-
Ongenae, F.1
Van Looy, S.2
Verstraeten, D.3
Verplancke, T.4
Benoit, D.5
De Turck, F.6
-
22
-
-
84939201385
-
-
[EB/OL] ; [accessed 11.11.14].
-
[EB/OL] ; [accessed 11.11.14]. http://www.ceda.ac.uk/browse/badc/ukmo-metdb.
-
-
-
|