-
1
-
-
55049083103
-
IFATS collection: the role of human adipose-derived stromal cells in inflammatory microvascular remodeling and evidence of a perivascular phenotype
-
Amos PJ, Shang H, Bailey AM et al. 2008; IFATS collection: the role of human adipose-derived stromal cells in inflammatory microvascular remodeling and evidence of a perivascular phenotype. Stem Cells 26: 2682–2690.
-
(2008)
Stem Cells
, vol.26
, pp. 2682-2690
-
-
Amos, P.J.1
Shang, H.2
Bailey, A.M.3
-
2
-
-
33846939297
-
Compressive properties and degradability of poly(ε-caprolatone)/hydroxyapatite composites under accelerated hydrolytic degradation
-
Ang KC, Leong KF, Chua CK et al. 2007; Compressive properties and degradability of poly(ε-caprolatone)/hydroxyapatite composites under accelerated hydrolytic degradation. J Biomed Mater Res A 80: 655–660.
-
(2007)
J Biomed Mater Res A
, vol.80
, pp. 655-660
-
-
Ang, K.C.1
Leong, K.F.2
Chua, C.K.3
-
3
-
-
0034580476
-
Biomaterial developments for bone tissue engineering
-
Burg KJ, Porter S, Kellam JF. 2000; Biomaterial developments for bone tissue engineering. Biomaterials 21: 2347–2359.
-
(2000)
Biomaterials
, vol.21
, pp. 2347-2359
-
-
Burg, K.J.1
Porter, S.2
Kellam, J.F.3
-
4
-
-
74249112625
-
A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering
-
Cao H, Kuboyama N. 2010; A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering. Bone 46: 386–395.
-
(2010)
Bone
, vol.46
, pp. 386-395
-
-
Cao, H.1
Kuboyama, N.2
-
5
-
-
33847129574
-
Mechanochemical synthesis and characterization of nanostructured β-TCP powder
-
Choi DK, Kumta PN. 2007; Mechanochemical synthesis and characterization of nanostructured β-TCP powder. Mater Sci Eng C 27: 377–381.
-
(2007)
Mater Sci Eng C
, vol.27
, pp. 377-381
-
-
Choi, D.K.1
Kumta, P.N.2
-
6
-
-
8544236267
-
Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects
-
Chua CK, Leong KF, Tan KH et al. 2004; Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects. J Mater Sci Mater Med 15: 1113–1121.
-
(2004)
J Mater Sci Mater Med
, vol.15
, pp. 1113-1121
-
-
Chua, C.K.1
Leong, K.F.2
Tan, K.H.3
-
7
-
-
77956067339
-
The interactions between rat-adipose-derived stromal cells, recombinant human bone morphogenetic protein-2, and β-tricalcium phosphate play an important role in bone tissue engineering
-
E LL, Xu LL, Wu X et al. 2010; The interactions between rat-adipose-derived stromal cells, recombinant human bone morphogenetic protein-2, and β-tricalcium phosphate play an important role in bone tissue engineering. Tissue Eng A 16: 2927–2940.
-
(2010)
Tissue Eng A
, vol.16
, pp. 2927-2940
-
-
Ll, E.1
Xu, L.L.2
Wu, X.3
-
8
-
-
77955868224
-
Selective laser sintering of hydroxyapatite/poly-ε-caprolactone scaffolds
-
Eosoly S, Brabazon D, Lohfeld S et al. 2010; Selective laser sintering of hydroxyapatite/poly-ε-caprolactone scaffolds. Acta Biomater 6: 2511–2517.
-
(2010)
Acta Biomater
, vol.6
, pp. 2511-2517
-
-
Eosoly, S.1
Brabazon, D.2
Lohfeld, S.3
-
9
-
-
79956257420
-
Development of an osteoconductive PCL–PDIPF–hydroxyapatite composite scaffold for bone tissue engineering
-
Fernandez JM, Molinuevo MS, Cortizo MS et al. 2011; Development of an osteoconductive PCL–PDIPF–hydroxyapatite composite scaffold for bone tissue engineering. J Tissue Eng Regen Med 5: e126–e135.
-
(2011)
J Tissue Eng Regen Med
, vol.5
, pp. e126-e135
-
-
Fernandez, J.M.1
Molinuevo, M.S.2
Cortizo, M.S.3
-
10
-
-
39149097154
-
Collagen I gel can facilitate homogeneous bone formation of adipose-derived stem cells in PLGA–β-TCP scaffold
-
Hao W, Hu YY, Wei YY et al. 2008; Collagen I gel can facilitate homogeneous bone formation of adipose-derived stem cells in PLGA–β-TCP scaffold. Cells Tissues Organs 187: 89–102.
-
(2008)
Cells Tissues Organs
, vol.187
, pp. 89-102
-
-
Hao, W.1
Hu, Y.Y.2
Wei, Y.Y.3
-
11
-
-
73849088645
-
Skeletal repair in rabbits using a novel biomimetic composite based on adipose-derived stem cells encapsulated in collagen I gel with PLGA–β-TCP scaffold
-
Hao W, Pang L, Jiang M et al. 2010; Skeletal repair in rabbits using a novel biomimetic composite based on adipose-derived stem cells encapsulated in collagen I gel with PLGA–β-TCP scaffold. J Orthop Res 28: 252–257.
-
(2010)
J Orthop Res
, vol.28
, pp. 252-257
-
-
Hao, W.1
Pang, L.2
Jiang, M.3
-
12
-
-
0014852980
-
Potential of ceramic materials as permanently implantable skeletal prostheses
-
Hulbert SF, Young FA, Mathews RS et al. 1970; Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res 4: 433–456.
-
(1970)
J Biomed Mater Res
, vol.4
, pp. 433-456
-
-
Hulbert, S.F.1
Young, F.A.2
Mathews, R.S.3
-
14
-
-
0035054981
-
Scaffold design and fabrication technologies for engineering tissues – state of the art and future perspectives
-
Hutmacher DW. 2001a; Scaffold design and fabrication technologies for engineering tissues – state of the art and future perspectives. J Biomater Sci Polym Ed 12: 107–124.
-
(2001)
J Biomater Sci Polym Ed
, vol.12
, pp. 107-124
-
-
Hutmacher, D.W.1
-
15
-
-
0035054981
-
Scaffold design and fabrication technologies for engineering tissues – state of the art and future perspectives
-
Hutmacher DW. 2001b; Scaffold design and fabrication technologies for engineering tissues – state of the art and future perspectives. J Biomater Sci 12: 107–124.
-
(2001)
J Biomater Sci
, vol.12
, pp. 107-124
-
-
Hutmacher, D.W.1
-
16
-
-
3042782581
-
Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems
-
Hutmacher DW, Sittinger M, Risbud MV. 2004; Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22: 354–362.
-
(2004)
Trends Biotechnol
, vol.22
, pp. 354-362
-
-
Hutmacher, D.W.1
Sittinger, M.2
Risbud, M.V.3
-
17
-
-
17844400927
-
Porosity of 3D biomaterial scaffolds and osteogenesis
-
Karageorgiou V, Kaplan D. 2005; Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26: 5474–5491.
-
(2005)
Biomaterials
, vol.26
, pp. 5474-5491
-
-
Karageorgiou, V.1
Kaplan, D.2
-
18
-
-
56349113678
-
Synthesis and characterization of elastic and macroporous chitosan–gelatin cryogels for tissue engineering
-
Kathuria N, Tripathi A, Kar KK et al. 2009; Synthesis and characterization of elastic and macroporous chitosan–gelatin cryogels for tissue engineering. Acta Biomater 5: 406–418.
-
(2009)
Acta Biomater
, vol.5
, pp. 406-418
-
-
Kathuria, N.1
Tripathi, A.2
Kar, K.K.3
-
19
-
-
77953467681
-
A novel collagen scaffold supports human osteogenesis – applications for bone tissue engineering
-
Keogh MB, O' Brien FJ, Daly JS. 2010; A novel collagen scaffold supports human osteogenesis – applications for bone tissue engineering. Cell Tissue Res 340: 169–177.
-
(2010)
Cell Tissue Res
, vol.340
, pp. 169-177
-
-
Keogh, M.B.1
O' Brien, F.J.2
Daly, J.S.3
-
20
-
-
77952196217
-
Solid free-form fabrication-based PCL/HA scaffolds fabricated with a multi-head deposition system for bone tissue engineering
-
Kim JY, Lee TJ, Cho DW et al. 2010; Solid free-form fabrication-based PCL/HA scaffolds fabricated with a multi-head deposition system for bone tissue engineering. J Biomater Sci Polym Ed 21: 951–962.
-
(2010)
J Biomater Sci Polym Ed
, vol.21
, pp. 951-962
-
-
Kim, J.Y.1
Lee, T.J.2
Cho, D.W.3
-
21
-
-
28444469126
-
Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering
-
Kim SS, Sun Park M, Jeon O et al. 2006; Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials 27: 1399–1409.
-
(2006)
Biomaterials
, vol.27
, pp. 1399-1409
-
-
Kim, S.S.1
Sun Park, M.2
Jeon, O.3
-
22
-
-
0032471714
-
Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels
-
Kim SS, Utsunomiya H, Koski JA et al. 1998; Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels. Ann Surg 228: 8–13.
-
(1998)
Ann Surg
, vol.228
, pp. 8-13
-
-
Kim, S.S.1
Utsunomiya, H.2
Koski, J.A.3
-
23
-
-
65549108981
-
Superhydrophobic and superhydrophilic plant surfaces: an insiration for biomimetic materials
-
Koch K, Barthlott W. 2009; Superhydrophobic and superhydrophilic plant surfaces: an insiration for biomimetic materials. Phil Trans R Soc A 367: 1487–1509.
-
(2009)
Phil Trans R Soc A
, vol.367
, pp. 1487-1509
-
-
Koch, K.1
Barthlott, W.2
-
25
-
-
0003049825
-
Biocompatibility of SLS-formed calcium phosphate implants
-
Austin, TX, August 12–14
-
Lee G, Barlow JW, Fox WC. 1996; Biocompatibility of SLS-formed calcium phosphate implants. Presented at the '96 Solid Freeform Fabrication, Austin, TX, August 12–14.
-
(1996)
Presented at the '96 Solid Freeform Fabrication
-
-
Lee, G.1
Barlow, J.W.2
Fox, W.C.3
-
26
-
-
34547681862
-
Assembly of collagen-binding peptide with collagen as a bioactive scaffold for osteogenesis in vitro and in vivo
-
Lee JY, Choo JE, Choi YS et al. 2007; Assembly of collagen-binding peptide with collagen as a bioactive scaffold for osteogenesis in vitro and in vivo. Biomaterials 28: 4257–4267.
-
(2007)
Biomaterials
, vol.28
, pp. 4257-4267
-
-
Lee, J.Y.1
Choo, J.E.2
Choi, Y.S.3
-
27
-
-
84862948624
-
In vitro experiments on laser sintered porous PCL scaffolds with polymer hydrogel for bone repair
-
Lee MY, Liu SW, Chen JP. 2011; In vitro experiments on laser sintered porous PCL scaffolds with polymer hydrogel for bone repair. J Mech Med Biol 11: 983–992.
-
(2011)
J Mech Med Biol
, vol.11
, pp. 983-992
-
-
Lee, M.Y.1
Liu, S.W.2
Chen, J.P.3
-
28
-
-
0036166394
-
Properties of osteoconductive biomaterials: calcium phosphates
-
LeGeros RZ. 2002; Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 395: 81–98.
-
(2002)
Clin Orthop Relat Res
, vol.395
, pp. 81-98
-
-
LeGeros, R.Z.1
-
29
-
-
0037409864
-
Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs
-
Leong KF, Cheah CM, Chua CK. 2003; Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24: 2363–2378.
-
(2003)
Biomaterials
, vol.24
, pp. 2363-2378
-
-
Leong, K.F.1
Cheah, C.M.2
Chua, C.K.3
-
30
-
-
0026537256
-
Concepts of osteoblast growth and differentiation: basis for modulation of bone cell development and tissue formation
-
Lian JB, Stein GS. 1992; Concepts of osteoblast growth and differentiation: basis for modulation of bone cell development and tissue formation. Crit Rev Oral Biol Med 3: 269–305.
-
(1992)
Crit Rev Oral Biol Med
, vol.3
, pp. 269-305
-
-
Lian, J.B.1
Stein, G.S.2
-
31
-
-
79955585067
-
Osteogenics of adipose-derived stem cells on three-dimensional, macroporous gelatin–hyaluronic acid cryogels
-
Liao HT, Chang KH, Chen JP. 2011; Osteogenics of adipose-derived stem cells on three-dimensional, macroporous gelatin–hyaluronic acid cryogels. Biomed Eng Appl Basis Commun 23: 127–133.
-
(2011)
Biomed Eng Appl Basis Commun
, vol.23
, pp. 127-133
-
-
Liao, H.T.1
Chang, K.H.2
Chen, J.P.3
-
32
-
-
33847650121
-
Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages
-
Liu TM, Martina M, Hutmacher DW et al. 2007; Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells 25: 750–760.
-
(2007)
Stem Cells
, vol.25
, pp. 750-760
-
-
Liu, T.M.1
Martina, M.2
Hutmacher, D.W.3
-
33
-
-
75049083232
-
β-Tricalcium phosphate 3D scaffold promote alone osteogenic differentiation of human adipose stem cells: in vitro study
-
Marino G, Rosso F, Cafiero G et al. 2010; β-Tricalcium phosphate 3D scaffold promote alone osteogenic differentiation of human adipose stem cells: in vitro study. J Mater Sci Mater Med 21: 353–363.
-
(2010)
J Mater Sci Mater Med
, vol.21
, pp. 353-363
-
-
Marino, G.1
Rosso, F.2
Cafiero, G.3
-
34
-
-
84860523401
-
Adipose-derived stem cells as a novel tool for future regenerative medicine
-
Mizuno H, Tobita M, Uysal AC. 2012; Adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells 30: 804–810.
-
(2012)
Stem Cells
, vol.30
, pp. 804-810
-
-
Mizuno, H.1
Tobita, M.2
Uysal, A.C.3
-
35
-
-
0031081297
-
Osteogenesis by bone marrow stromal cells maintained on type I collagen matrix gels in vivo
-
Mizuno M, Shindo M, Kobayashi D et al. 1997; Osteogenesis by bone marrow stromal cells maintained on type I collagen matrix gels in vivo. Bone 20: 101–107.
-
(1997)
Bone
, vol.20
, pp. 101-107
-
-
Mizuno, M.1
Shindo, M.2
Kobayashi, D.3
-
36
-
-
33846188184
-
In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method
-
Oh SH, Park IK, Kim JM et al. 2007; In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials 28: 1664–1671.
-
(2007)
Biomaterials
, vol.28
, pp. 1664-1671
-
-
Oh, S.H.1
Park, I.K.2
Kim, J.M.3
-
37
-
-
79956196821
-
Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering
-
Park SA, Lee SH, Kim WD. 2011; Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering. Bioprocess Biosyst Eng 34: 505–513.
-
(2011)
Bioprocess Biosyst Eng
, vol.34
, pp. 505-513
-
-
Park, S.A.1
Lee, S.H.2
Kim, W.D.3
-
38
-
-
77649158306
-
Polymeric materials for bone and cartilage repair
-
Puppi D. 2010; Polymeric materials for bone and cartilage repair. Progr Polym Sci 35: 403–440.
-
(2010)
Progr Polym Sci
, vol.35
, pp. 403-440
-
-
Puppi, D.1
-
39
-
-
72649102634
-
Natural bone collagen scaffold combined with autologous enriched bone marrow cells for induction of osteogenesis in an ovine spinal fusion model
-
Qian Y, Lin Z, Chen J et al. 2009; Natural bone collagen scaffold combined with autologous enriched bone marrow cells for induction of osteogenesis in an ovine spinal fusion model. Tissue Eng A 15: 3547–3558.
-
(2009)
Tissue Eng A
, vol.15
, pp. 3547-3558
-
-
Qian, Y.1
Lin, Z.2
Chen, J.3
-
40
-
-
33644934897
-
Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering
-
Rezwan K, Chen QZ, Blaker JJ et al. 2006; Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27: 3413–3431.
-
(2006)
Biomaterials
, vol.27
, pp. 3413-3431
-
-
Rezwan, K.1
Chen, Q.Z.2
Blaker, J.J.3
-
41
-
-
0033858122
-
Selective laser sintering of ultra-high molecular weight polyethylene for clinical applications
-
Rimell JT, Marquis PM. 2000; Selective laser sintering of ultra-high molecular weight polyethylene for clinical applications. J Biomed Mater Res 53: 414–420.
-
(2000)
J Biomed Mater Res
, vol.53
, pp. 414-420
-
-
Rimell, J.T.1
Marquis, P.M.2
-
42
-
-
0344306399
-
Performance of degradable composite bone repair products made via three-dimensional fabrication techniques
-
Roy TD, Simon JL, Ricci JL et al. 2003; Performance of degradable composite bone repair products made via three-dimensional fabrication techniques. J Biomed Mater Res A 66: 283–291.
-
(2003)
J Biomed Mater Res A
, vol.66
, pp. 283-291
-
-
Roy, T.D.1
Simon, J.L.2
Ricci, J.L.3
-
43
-
-
3242700527
-
Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds
-
discussion, 39–40
-
Sachlos E, Czernuszka JT. 2003; Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 5: 29–39; discussion, 39–40.
-
(2003)
Eur Cell Mater
, vol.5
, pp. 29-39
-
-
Sachlos, E.1
Czernuszka, J.T.2
-
44
-
-
28744457098
-
Bone formation in a long bone defect model using a platelet-rich plasma-loaded collagen scaffold
-
Sarkar MR, Augat P, Shefelbine SJ et al. 2006; Bone formation in a long bone defect model using a platelet-rich plasma-loaded collagen scaffold. Biomaterials 27: 1817–1823.
-
(2006)
Biomaterials
, vol.27
, pp. 1817-1823
-
-
Sarkar, M.R.1
Augat, P.2
Shefelbine, S.J.3
-
47
-
-
77956761652
-
Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering
-
Shor L, Guceri S, Chang R et al. 2009; Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Biofabrication 1: 015003.
-
(2009)
Biofabrication
, vol.1
, pp. 015003
-
-
Shor, L.1
Guceri, S.2
Chang, R.3
-
48
-
-
84941944801
-
Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast–scaffold interactions in vitro
-
Shor L, Guceri S, Wen X et al. 2007; Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast–scaffold interactions in vitro. Biomaterials 28: 5291–5297.
-
(2007)
Biomaterials
, vol.28
, pp. 5291-5297
-
-
Shor, L.1
Guceri, S.2
Wen, X.3
-
49
-
-
37549037519
-
Development of a 95/5 poly(l-lactide-co-glycolide)/hydroxylapatite and β-tricalcium phosphate scaffold as bone replacement material via selective laser sintering
-
Simpson RL, Wiria FE, Amis AA et al. 2008; Development of a 95/5 poly(l-lactide-co-glycolide)/hydroxylapatite and β-tricalcium phosphate scaffold as bone replacement material via selective laser sintering. J Biomed Mater Res B Appl Biomater 84: 17–25.
-
(2008)
J Biomed Mater Res B Appl Biomater
, vol.84
, pp. 17-25
-
-
Simpson, R.L.1
Wiria, F.E.2
Amis, A.A.3
-
50
-
-
53149099334
-
The upregulation of osteoblast marker genes in mesenchymal stem cells proves the osteoinductivity of hydroxyapatite/tricalcium phosphate biomaterial
-
Sun H, Ye F, Wang J et al. 2008; The upregulation of osteoblast marker genes in mesenchymal stem cells proves the osteoinductivity of hydroxyapatite/tricalcium phosphate biomaterial. Transpl Proc 40: 2645–2648.
-
(2008)
Transpl Proc
, vol.40
, pp. 2645-2648
-
-
Sun, H.1
Ye, F.2
Wang, J.3
-
51
-
-
0041670837
-
Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends
-
Tan KH, Chua CK, Leong KF et al. 2003; Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends. Biomaterials 24: 3115–3123.
-
(2003)
Biomaterials
, vol.24
, pp. 3115-3123
-
-
Tan, K.H.1
Chua, C.K.2
Leong, K.F.3
-
52
-
-
21444443609
-
Selective laser sintering of biocompatible polymers for applications in tissue engineering
-
Tan KH, Chua CK, Leong KF et al. 2005a; Selective laser sintering of biocompatible polymers for applications in tissue engineering. Biomed Mater Eng 15: 113–124.
-
(2005)
Biomed Mater Eng
, vol.15
, pp. 113-124
-
-
Tan, K.H.1
Chua, C.K.2
Leong, K.F.3
-
53
-
-
21444443609
-
Selective laser sintering of biocompatible polymers for applications in tissue engineering
-
Tan KH, Chua CK, Leong KF et al. 2005b; Selective laser sintering of biocompatible polymers for applications in tissue engineering. Biomed Mater Eng 15: 113–124.
-
(2005)
Biomed Mater Eng
, vol.15
, pp. 113-124
-
-
Tan, K.H.1
Chua, C.K.2
Leong, K.F.3
-
54
-
-
77954765958
-
Type I collagen promotes proliferation and osteogenesis of human mesenchymal stem cells via activation of ERK and Akt pathways
-
Tsai KS, Kao SY, Wang CY et al. 2010; Type I collagen promotes proliferation and osteogenesis of human mesenchymal stem cells via activation of ERK and Akt pathways. J Biomed Mater Res A 94: 673–682.
-
(2010)
J Biomed Mater Res A
, vol.94
, pp. 673-682
-
-
Tsai, K.S.1
Kao, S.Y.2
Wang, C.Y.3
-
55
-
-
33847267346
-
Exogenous recombinant human BMP-2 has little initial effects on human osteoblastic cells cultured on collagen type I coated/noncoated hydroxyapatite ceramic granules
-
Turhani D, Weissenbock M, Stein E et al. 2007; Exogenous recombinant human BMP-2 has little initial effects on human osteoblastic cells cultured on collagen type I coated/noncoated hydroxyapatite ceramic granules. J Oral Maxillofac Surg 65: 485–493.
-
(2007)
J Oral Maxillofac Surg
, vol.65
, pp. 485-493
-
-
Turhani, D.1
Weissenbock, M.2
Stein, E.3
-
56
-
-
0038537367
-
Scaffolds and biomaterials for tissue engineering: a review of clinical applications
-
Vats A, Tolley NS, Polak JM et al. 2003; Scaffolds and biomaterials for tissue engineering: a review of clinical applications. Clin Otolaryngol Allied Sci 28: 165–172.
-
(2003)
Clin Otolaryngol Allied Sci
, vol.28
, pp. 165-172
-
-
Vats, A.1
Tolley, N.S.2
Polak, J.M.3
-
57
-
-
14844322862
-
Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering
-
Williams JM, Adewunmi A, Schek RM et al. 2005; Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26: 4817–4827.
-
(2005)
Biomaterials
, vol.26
, pp. 4817-4827
-
-
Williams, J.M.1
Adewunmi, A.2
Schek, R.M.3
-
58
-
-
40349106262
-
Improved biocomposite development of poly(vinyl alcohol) and hydroxyapatite for tissue engineering scaffold fabrication using selective laser sintering
-
Wiria FE, Chua CK, Leong KF et al. 2008; Improved biocomposite development of poly(vinyl alcohol) and hydroxyapatite for tissue engineering scaffold fabrication using selective laser sintering. J Mater Sci Mater Med 19: 989–996.
-
(2008)
J Mater Sci Mater Med
, vol.19
, pp. 989-996
-
-
Wiria, F.E.1
Chua, C.K.2
Leong, K.F.3
-
59
-
-
33751346057
-
Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering
-
Wiria FE, Leong KF, Chua CK et al. 2007; Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater 3: 1–12.
-
(2007)
Acta Biomater
, vol.3
, pp. 1-12
-
-
Wiria, F.E.1
Leong, K.F.2
Chua, C.K.3
-
60
-
-
0035671158
-
The design of scaffolds for use in tissue engineering. Part I. Traditional factors
-
Yang S, Leong KF, Du Z et al. 2001; The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7: 679–689.
-
(2001)
Tissue Eng
, vol.7
, pp. 679-689
-
-
Yang, S.1
Leong, K.F.2
Du, Z.3
-
61
-
-
0036191695
-
The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques
-
Yang S, Leong KF, Du Z et al. 2002; The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng 8: 1–11.
-
(2002)
Tissue Eng
, vol.8
, pp. 1-11
-
-
Yang, S.1
Leong, K.F.2
Du, Z.3
-
62
-
-
8144227180
-
Rapid prototyping in tissue engineering: challenges and potential
-
Yeong WY, Chua CK, Leong KF et al. 2004; Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 22: 643–652.
-
(2004)
Trends Biotechnol
, vol.22
, pp. 643-652
-
-
Yeong, W.Y.1
Chua, C.K.2
Leong, K.F.3
-
63
-
-
77956633477
-
Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering
-
Yeong WY, Sudarmadji N, Yu HY et al. 2010; Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater 6: 2028–2034.
-
(2010)
Acta Biomater
, vol.6
, pp. 2028-2034
-
-
Yeong, W.Y.1
Sudarmadji, N.2
Yu, H.Y.3
-
64
-
-
18744373595
-
Human adipose tissue is a source of multipotent stem cells
-
Zuk PA, Zhu M, Ashjian P et al. 2002; Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13: 4279–4295.
-
(2002)
Mol Biol Cell
, vol.13
, pp. 4279-4295
-
-
Zuk, P.A.1
Zhu, M.2
Ashjian, P.3
-
65
-
-
0035067539
-
Multilineage cells from human adipose tissue: implications for cell-based therapies
-
Zuk PA, Zhu M, Mizuno H et al. 2001; Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7: 211–228.
-
(2001)
Tissue Eng
, vol.7
, pp. 211-228
-
-
Zuk, P.A.1
Zhu, M.2
Mizuno, H.3
|