메뉴 건너뛰기




Volumn 10, Issue 10, 2016, Pages E337-E353

Osteogenesis of adipose-derived stem cells on polycaprolactone–β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I

Author keywords

adipose derived stem cells; osteogenesis; polycaprolactone; selective laser sintering; type I collagen; tricalcium phosphate

Indexed keywords

3D PRINTERS; BONE; CELL ENGINEERING; COATINGS; COLLAGEN; COPYRIGHTS; FABRICATION; POLYCAPROLACTONE; PORE SIZE; SCAFFOLDS (BIOLOGY); SINTERING; STEM CELLS; TRANSMISSION CONTROL PROTOCOL;

EID: 85027928361     PISSN: 19326254     EISSN: 19327005     Source Type: Journal    
DOI: 10.1002/term.1811     Document Type: Article
Times cited : (92)

References (65)
  • 1
    • 55049083103 scopus 로고    scopus 로고
    • IFATS collection: the role of human adipose-derived stromal cells in inflammatory microvascular remodeling and evidence of a perivascular phenotype
    • Amos PJ, Shang H, Bailey AM et al. 2008; IFATS collection: the role of human adipose-derived stromal cells in inflammatory microvascular remodeling and evidence of a perivascular phenotype. Stem Cells 26: 2682–2690.
    • (2008) Stem Cells , vol.26 , pp. 2682-2690
    • Amos, P.J.1    Shang, H.2    Bailey, A.M.3
  • 2
    • 33846939297 scopus 로고    scopus 로고
    • Compressive properties and degradability of poly(ε-caprolatone)/hydroxyapatite composites under accelerated hydrolytic degradation
    • Ang KC, Leong KF, Chua CK et al. 2007; Compressive properties and degradability of poly(ε-caprolatone)/hydroxyapatite composites under accelerated hydrolytic degradation. J Biomed Mater Res A 80: 655–660.
    • (2007) J Biomed Mater Res A , vol.80 , pp. 655-660
    • Ang, K.C.1    Leong, K.F.2    Chua, C.K.3
  • 3
    • 0034580476 scopus 로고    scopus 로고
    • Biomaterial developments for bone tissue engineering
    • Burg KJ, Porter S, Kellam JF. 2000; Biomaterial developments for bone tissue engineering. Biomaterials 21: 2347–2359.
    • (2000) Biomaterials , vol.21 , pp. 2347-2359
    • Burg, K.J.1    Porter, S.2    Kellam, J.F.3
  • 4
    • 74249112625 scopus 로고    scopus 로고
    • A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering
    • Cao H, Kuboyama N. 2010; A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering. Bone 46: 386–395.
    • (2010) Bone , vol.46 , pp. 386-395
    • Cao, H.1    Kuboyama, N.2
  • 5
    • 33847129574 scopus 로고    scopus 로고
    • Mechanochemical synthesis and characterization of nanostructured β-TCP powder
    • Choi DK, Kumta PN. 2007; Mechanochemical synthesis and characterization of nanostructured β-TCP powder. Mater Sci Eng C 27: 377–381.
    • (2007) Mater Sci Eng C , vol.27 , pp. 377-381
    • Choi, D.K.1    Kumta, P.N.2
  • 6
    • 8544236267 scopus 로고    scopus 로고
    • Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects
    • Chua CK, Leong KF, Tan KH et al. 2004; Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects. J Mater Sci Mater Med 15: 1113–1121.
    • (2004) J Mater Sci Mater Med , vol.15 , pp. 1113-1121
    • Chua, C.K.1    Leong, K.F.2    Tan, K.H.3
  • 7
    • 77956067339 scopus 로고    scopus 로고
    • The interactions between rat-adipose-derived stromal cells, recombinant human bone morphogenetic protein-2, and β-tricalcium phosphate play an important role in bone tissue engineering
    • E LL, Xu LL, Wu X et al. 2010; The interactions between rat-adipose-derived stromal cells, recombinant human bone morphogenetic protein-2, and β-tricalcium phosphate play an important role in bone tissue engineering. Tissue Eng A 16: 2927–2940.
    • (2010) Tissue Eng A , vol.16 , pp. 2927-2940
    • Ll, E.1    Xu, L.L.2    Wu, X.3
  • 8
    • 77955868224 scopus 로고    scopus 로고
    • Selective laser sintering of hydroxyapatite/poly-ε-caprolactone scaffolds
    • Eosoly S, Brabazon D, Lohfeld S et al. 2010; Selective laser sintering of hydroxyapatite/poly-ε-caprolactone scaffolds. Acta Biomater 6: 2511–2517.
    • (2010) Acta Biomater , vol.6 , pp. 2511-2517
    • Eosoly, S.1    Brabazon, D.2    Lohfeld, S.3
  • 9
    • 79956257420 scopus 로고    scopus 로고
    • Development of an osteoconductive PCL–PDIPF–hydroxyapatite composite scaffold for bone tissue engineering
    • Fernandez JM, Molinuevo MS, Cortizo MS et al. 2011; Development of an osteoconductive PCL–PDIPF–hydroxyapatite composite scaffold for bone tissue engineering. J Tissue Eng Regen Med 5: e126–e135.
    • (2011) J Tissue Eng Regen Med , vol.5 , pp. e126-e135
    • Fernandez, J.M.1    Molinuevo, M.S.2    Cortizo, M.S.3
  • 10
    • 39149097154 scopus 로고    scopus 로고
    • Collagen I gel can facilitate homogeneous bone formation of adipose-derived stem cells in PLGA–β-TCP scaffold
    • Hao W, Hu YY, Wei YY et al. 2008; Collagen I gel can facilitate homogeneous bone formation of adipose-derived stem cells in PLGA–β-TCP scaffold. Cells Tissues Organs 187: 89–102.
    • (2008) Cells Tissues Organs , vol.187 , pp. 89-102
    • Hao, W.1    Hu, Y.Y.2    Wei, Y.Y.3
  • 11
    • 73849088645 scopus 로고    scopus 로고
    • Skeletal repair in rabbits using a novel biomimetic composite based on adipose-derived stem cells encapsulated in collagen I gel with PLGA–β-TCP scaffold
    • Hao W, Pang L, Jiang M et al. 2010; Skeletal repair in rabbits using a novel biomimetic composite based on adipose-derived stem cells encapsulated in collagen I gel with PLGA–β-TCP scaffold. J Orthop Res 28: 252–257.
    • (2010) J Orthop Res , vol.28 , pp. 252-257
    • Hao, W.1    Pang, L.2    Jiang, M.3
  • 12
    • 0014852980 scopus 로고
    • Potential of ceramic materials as permanently implantable skeletal prostheses
    • Hulbert SF, Young FA, Mathews RS et al. 1970; Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res 4: 433–456.
    • (1970) J Biomed Mater Res , vol.4 , pp. 433-456
    • Hulbert, S.F.1    Young, F.A.2    Mathews, R.S.3
  • 14
    • 0035054981 scopus 로고    scopus 로고
    • Scaffold design and fabrication technologies for engineering tissues – state of the art and future perspectives
    • Hutmacher DW. 2001a; Scaffold design and fabrication technologies for engineering tissues – state of the art and future perspectives. J Biomater Sci Polym Ed 12: 107–124.
    • (2001) J Biomater Sci Polym Ed , vol.12 , pp. 107-124
    • Hutmacher, D.W.1
  • 15
    • 0035054981 scopus 로고    scopus 로고
    • Scaffold design and fabrication technologies for engineering tissues – state of the art and future perspectives
    • Hutmacher DW. 2001b; Scaffold design and fabrication technologies for engineering tissues – state of the art and future perspectives. J Biomater Sci 12: 107–124.
    • (2001) J Biomater Sci , vol.12 , pp. 107-124
    • Hutmacher, D.W.1
  • 16
    • 3042782581 scopus 로고    scopus 로고
    • Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems
    • Hutmacher DW, Sittinger M, Risbud MV. 2004; Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22: 354–362.
    • (2004) Trends Biotechnol , vol.22 , pp. 354-362
    • Hutmacher, D.W.1    Sittinger, M.2    Risbud, M.V.3
  • 17
    • 17844400927 scopus 로고    scopus 로고
    • Porosity of 3D biomaterial scaffolds and osteogenesis
    • Karageorgiou V, Kaplan D. 2005; Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26: 5474–5491.
    • (2005) Biomaterials , vol.26 , pp. 5474-5491
    • Karageorgiou, V.1    Kaplan, D.2
  • 18
    • 56349113678 scopus 로고    scopus 로고
    • Synthesis and characterization of elastic and macroporous chitosan–gelatin cryogels for tissue engineering
    • Kathuria N, Tripathi A, Kar KK et al. 2009; Synthesis and characterization of elastic and macroporous chitosan–gelatin cryogels for tissue engineering. Acta Biomater 5: 406–418.
    • (2009) Acta Biomater , vol.5 , pp. 406-418
    • Kathuria, N.1    Tripathi, A.2    Kar, K.K.3
  • 19
    • 77953467681 scopus 로고    scopus 로고
    • A novel collagen scaffold supports human osteogenesis – applications for bone tissue engineering
    • Keogh MB, O' Brien FJ, Daly JS. 2010; A novel collagen scaffold supports human osteogenesis – applications for bone tissue engineering. Cell Tissue Res 340: 169–177.
    • (2010) Cell Tissue Res , vol.340 , pp. 169-177
    • Keogh, M.B.1    O' Brien, F.J.2    Daly, J.S.3
  • 20
    • 77952196217 scopus 로고    scopus 로고
    • Solid free-form fabrication-based PCL/HA scaffolds fabricated with a multi-head deposition system for bone tissue engineering
    • Kim JY, Lee TJ, Cho DW et al. 2010; Solid free-form fabrication-based PCL/HA scaffolds fabricated with a multi-head deposition system for bone tissue engineering. J Biomater Sci Polym Ed 21: 951–962.
    • (2010) J Biomater Sci Polym Ed , vol.21 , pp. 951-962
    • Kim, J.Y.1    Lee, T.J.2    Cho, D.W.3
  • 21
    • 28444469126 scopus 로고    scopus 로고
    • Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering
    • Kim SS, Sun Park M, Jeon O et al. 2006; Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials 27: 1399–1409.
    • (2006) Biomaterials , vol.27 , pp. 1399-1409
    • Kim, S.S.1    Sun Park, M.2    Jeon, O.3
  • 22
    • 0032471714 scopus 로고    scopus 로고
    • Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels
    • Kim SS, Utsunomiya H, Koski JA et al. 1998; Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels. Ann Surg 228: 8–13.
    • (1998) Ann Surg , vol.228 , pp. 8-13
    • Kim, S.S.1    Utsunomiya, H.2    Koski, J.A.3
  • 23
    • 65549108981 scopus 로고    scopus 로고
    • Superhydrophobic and superhydrophilic plant surfaces: an insiration for biomimetic materials
    • Koch K, Barthlott W. 2009; Superhydrophobic and superhydrophilic plant surfaces: an insiration for biomimetic materials. Phil Trans R Soc A 367: 1487–1509.
    • (2009) Phil Trans R Soc A , vol.367 , pp. 1487-1509
    • Koch, K.1    Barthlott, W.2
  • 24
    • 0002909192 scopus 로고
    • Selective laser sintering of bioceramic materials for implants
    • Austin, TX, August 9–11
    • Lee G, Barlow JW. 1993; Selective laser sintering of bioceramic materials for implants. Presented at the '93 Solid Freeform Fabrication, Austin, TX, August 9–11.
    • (1993) Presented at the '93 Solid Freeform Fabrication
    • Lee, G.1    Barlow, J.W.2
  • 26
    • 34547681862 scopus 로고    scopus 로고
    • Assembly of collagen-binding peptide with collagen as a bioactive scaffold for osteogenesis in vitro and in vivo
    • Lee JY, Choo JE, Choi YS et al. 2007; Assembly of collagen-binding peptide with collagen as a bioactive scaffold for osteogenesis in vitro and in vivo. Biomaterials 28: 4257–4267.
    • (2007) Biomaterials , vol.28 , pp. 4257-4267
    • Lee, J.Y.1    Choo, J.E.2    Choi, Y.S.3
  • 27
    • 84862948624 scopus 로고    scopus 로고
    • In vitro experiments on laser sintered porous PCL scaffolds with polymer hydrogel for bone repair
    • Lee MY, Liu SW, Chen JP. 2011; In vitro experiments on laser sintered porous PCL scaffolds with polymer hydrogel for bone repair. J Mech Med Biol 11: 983–992.
    • (2011) J Mech Med Biol , vol.11 , pp. 983-992
    • Lee, M.Y.1    Liu, S.W.2    Chen, J.P.3
  • 28
    • 0036166394 scopus 로고    scopus 로고
    • Properties of osteoconductive biomaterials: calcium phosphates
    • LeGeros RZ. 2002; Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 395: 81–98.
    • (2002) Clin Orthop Relat Res , vol.395 , pp. 81-98
    • LeGeros, R.Z.1
  • 29
    • 0037409864 scopus 로고    scopus 로고
    • Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs
    • Leong KF, Cheah CM, Chua CK. 2003; Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24: 2363–2378.
    • (2003) Biomaterials , vol.24 , pp. 2363-2378
    • Leong, K.F.1    Cheah, C.M.2    Chua, C.K.3
  • 30
    • 0026537256 scopus 로고
    • Concepts of osteoblast growth and differentiation: basis for modulation of bone cell development and tissue formation
    • Lian JB, Stein GS. 1992; Concepts of osteoblast growth and differentiation: basis for modulation of bone cell development and tissue formation. Crit Rev Oral Biol Med 3: 269–305.
    • (1992) Crit Rev Oral Biol Med , vol.3 , pp. 269-305
    • Lian, J.B.1    Stein, G.S.2
  • 31
    • 79955585067 scopus 로고    scopus 로고
    • Osteogenics of adipose-derived stem cells on three-dimensional, macroporous gelatin–hyaluronic acid cryogels
    • Liao HT, Chang KH, Chen JP. 2011; Osteogenics of adipose-derived stem cells on three-dimensional, macroporous gelatin–hyaluronic acid cryogels. Biomed Eng Appl Basis Commun 23: 127–133.
    • (2011) Biomed Eng Appl Basis Commun , vol.23 , pp. 127-133
    • Liao, H.T.1    Chang, K.H.2    Chen, J.P.3
  • 32
    • 33847650121 scopus 로고    scopus 로고
    • Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages
    • Liu TM, Martina M, Hutmacher DW et al. 2007; Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells 25: 750–760.
    • (2007) Stem Cells , vol.25 , pp. 750-760
    • Liu, T.M.1    Martina, M.2    Hutmacher, D.W.3
  • 33
    • 75049083232 scopus 로고    scopus 로고
    • β-Tricalcium phosphate 3D scaffold promote alone osteogenic differentiation of human adipose stem cells: in vitro study
    • Marino G, Rosso F, Cafiero G et al. 2010; β-Tricalcium phosphate 3D scaffold promote alone osteogenic differentiation of human adipose stem cells: in vitro study. J Mater Sci Mater Med 21: 353–363.
    • (2010) J Mater Sci Mater Med , vol.21 , pp. 353-363
    • Marino, G.1    Rosso, F.2    Cafiero, G.3
  • 34
    • 84860523401 scopus 로고    scopus 로고
    • Adipose-derived stem cells as a novel tool for future regenerative medicine
    • Mizuno H, Tobita M, Uysal AC. 2012; Adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells 30: 804–810.
    • (2012) Stem Cells , vol.30 , pp. 804-810
    • Mizuno, H.1    Tobita, M.2    Uysal, A.C.3
  • 35
    • 0031081297 scopus 로고    scopus 로고
    • Osteogenesis by bone marrow stromal cells maintained on type I collagen matrix gels in vivo
    • Mizuno M, Shindo M, Kobayashi D et al. 1997; Osteogenesis by bone marrow stromal cells maintained on type I collagen matrix gels in vivo. Bone 20: 101–107.
    • (1997) Bone , vol.20 , pp. 101-107
    • Mizuno, M.1    Shindo, M.2    Kobayashi, D.3
  • 36
    • 33846188184 scopus 로고    scopus 로고
    • In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method
    • Oh SH, Park IK, Kim JM et al. 2007; In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials 28: 1664–1671.
    • (2007) Biomaterials , vol.28 , pp. 1664-1671
    • Oh, S.H.1    Park, I.K.2    Kim, J.M.3
  • 37
    • 79956196821 scopus 로고    scopus 로고
    • Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering
    • Park SA, Lee SH, Kim WD. 2011; Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering. Bioprocess Biosyst Eng 34: 505–513.
    • (2011) Bioprocess Biosyst Eng , vol.34 , pp. 505-513
    • Park, S.A.1    Lee, S.H.2    Kim, W.D.3
  • 38
    • 77649158306 scopus 로고    scopus 로고
    • Polymeric materials for bone and cartilage repair
    • Puppi D. 2010; Polymeric materials for bone and cartilage repair. Progr Polym Sci 35: 403–440.
    • (2010) Progr Polym Sci , vol.35 , pp. 403-440
    • Puppi, D.1
  • 39
    • 72649102634 scopus 로고    scopus 로고
    • Natural bone collagen scaffold combined with autologous enriched bone marrow cells for induction of osteogenesis in an ovine spinal fusion model
    • Qian Y, Lin Z, Chen J et al. 2009; Natural bone collagen scaffold combined with autologous enriched bone marrow cells for induction of osteogenesis in an ovine spinal fusion model. Tissue Eng A 15: 3547–3558.
    • (2009) Tissue Eng A , vol.15 , pp. 3547-3558
    • Qian, Y.1    Lin, Z.2    Chen, J.3
  • 40
    • 33644934897 scopus 로고    scopus 로고
    • Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering
    • Rezwan K, Chen QZ, Blaker JJ et al. 2006; Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27: 3413–3431.
    • (2006) Biomaterials , vol.27 , pp. 3413-3431
    • Rezwan, K.1    Chen, Q.Z.2    Blaker, J.J.3
  • 41
    • 0033858122 scopus 로고    scopus 로고
    • Selective laser sintering of ultra-high molecular weight polyethylene for clinical applications
    • Rimell JT, Marquis PM. 2000; Selective laser sintering of ultra-high molecular weight polyethylene for clinical applications. J Biomed Mater Res 53: 414–420.
    • (2000) J Biomed Mater Res , vol.53 , pp. 414-420
    • Rimell, J.T.1    Marquis, P.M.2
  • 42
    • 0344306399 scopus 로고    scopus 로고
    • Performance of degradable composite bone repair products made via three-dimensional fabrication techniques
    • Roy TD, Simon JL, Ricci JL et al. 2003; Performance of degradable composite bone repair products made via three-dimensional fabrication techniques. J Biomed Mater Res A 66: 283–291.
    • (2003) J Biomed Mater Res A , vol.66 , pp. 283-291
    • Roy, T.D.1    Simon, J.L.2    Ricci, J.L.3
  • 43
    • 3242700527 scopus 로고    scopus 로고
    • Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds
    • discussion, 39–40
    • Sachlos E, Czernuszka JT. 2003; Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 5: 29–39; discussion, 39–40.
    • (2003) Eur Cell Mater , vol.5 , pp. 29-39
    • Sachlos, E.1    Czernuszka, J.T.2
  • 44
    • 28744457098 scopus 로고    scopus 로고
    • Bone formation in a long bone defect model using a platelet-rich plasma-loaded collagen scaffold
    • Sarkar MR, Augat P, Shefelbine SJ et al. 2006; Bone formation in a long bone defect model using a platelet-rich plasma-loaded collagen scaffold. Biomaterials 27: 1817–1823.
    • (2006) Biomaterials , vol.27 , pp. 1817-1823
    • Sarkar, M.R.1    Augat, P.2    Shefelbine, S.J.3
  • 47
    • 77956761652 scopus 로고    scopus 로고
    • Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering
    • Shor L, Guceri S, Chang R et al. 2009; Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Biofabrication 1: 015003.
    • (2009) Biofabrication , vol.1 , pp. 015003
    • Shor, L.1    Guceri, S.2    Chang, R.3
  • 48
    • 84941944801 scopus 로고    scopus 로고
    • Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast–scaffold interactions in vitro
    • Shor L, Guceri S, Wen X et al. 2007; Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast–scaffold interactions in vitro. Biomaterials 28: 5291–5297.
    • (2007) Biomaterials , vol.28 , pp. 5291-5297
    • Shor, L.1    Guceri, S.2    Wen, X.3
  • 49
    • 37549037519 scopus 로고    scopus 로고
    • Development of a 95/5 poly(l-lactide-co-glycolide)/hydroxylapatite and β-tricalcium phosphate scaffold as bone replacement material via selective laser sintering
    • Simpson RL, Wiria FE, Amis AA et al. 2008; Development of a 95/5 poly(l-lactide-co-glycolide)/hydroxylapatite and β-tricalcium phosphate scaffold as bone replacement material via selective laser sintering. J Biomed Mater Res B Appl Biomater 84: 17–25.
    • (2008) J Biomed Mater Res B Appl Biomater , vol.84 , pp. 17-25
    • Simpson, R.L.1    Wiria, F.E.2    Amis, A.A.3
  • 50
    • 53149099334 scopus 로고    scopus 로고
    • The upregulation of osteoblast marker genes in mesenchymal stem cells proves the osteoinductivity of hydroxyapatite/tricalcium phosphate biomaterial
    • Sun H, Ye F, Wang J et al. 2008; The upregulation of osteoblast marker genes in mesenchymal stem cells proves the osteoinductivity of hydroxyapatite/tricalcium phosphate biomaterial. Transpl Proc 40: 2645–2648.
    • (2008) Transpl Proc , vol.40 , pp. 2645-2648
    • Sun, H.1    Ye, F.2    Wang, J.3
  • 51
    • 0041670837 scopus 로고    scopus 로고
    • Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends
    • Tan KH, Chua CK, Leong KF et al. 2003; Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends. Biomaterials 24: 3115–3123.
    • (2003) Biomaterials , vol.24 , pp. 3115-3123
    • Tan, K.H.1    Chua, C.K.2    Leong, K.F.3
  • 52
    • 21444443609 scopus 로고    scopus 로고
    • Selective laser sintering of biocompatible polymers for applications in tissue engineering
    • Tan KH, Chua CK, Leong KF et al. 2005a; Selective laser sintering of biocompatible polymers for applications in tissue engineering. Biomed Mater Eng 15: 113–124.
    • (2005) Biomed Mater Eng , vol.15 , pp. 113-124
    • Tan, K.H.1    Chua, C.K.2    Leong, K.F.3
  • 53
    • 21444443609 scopus 로고    scopus 로고
    • Selective laser sintering of biocompatible polymers for applications in tissue engineering
    • Tan KH, Chua CK, Leong KF et al. 2005b; Selective laser sintering of biocompatible polymers for applications in tissue engineering. Biomed Mater Eng 15: 113–124.
    • (2005) Biomed Mater Eng , vol.15 , pp. 113-124
    • Tan, K.H.1    Chua, C.K.2    Leong, K.F.3
  • 54
    • 77954765958 scopus 로고    scopus 로고
    • Type I collagen promotes proliferation and osteogenesis of human mesenchymal stem cells via activation of ERK and Akt pathways
    • Tsai KS, Kao SY, Wang CY et al. 2010; Type I collagen promotes proliferation and osteogenesis of human mesenchymal stem cells via activation of ERK and Akt pathways. J Biomed Mater Res A 94: 673–682.
    • (2010) J Biomed Mater Res A , vol.94 , pp. 673-682
    • Tsai, K.S.1    Kao, S.Y.2    Wang, C.Y.3
  • 55
    • 33847267346 scopus 로고    scopus 로고
    • Exogenous recombinant human BMP-2 has little initial effects on human osteoblastic cells cultured on collagen type I coated/noncoated hydroxyapatite ceramic granules
    • Turhani D, Weissenbock M, Stein E et al. 2007; Exogenous recombinant human BMP-2 has little initial effects on human osteoblastic cells cultured on collagen type I coated/noncoated hydroxyapatite ceramic granules. J Oral Maxillofac Surg 65: 485–493.
    • (2007) J Oral Maxillofac Surg , vol.65 , pp. 485-493
    • Turhani, D.1    Weissenbock, M.2    Stein, E.3
  • 56
    • 0038537367 scopus 로고    scopus 로고
    • Scaffolds and biomaterials for tissue engineering: a review of clinical applications
    • Vats A, Tolley NS, Polak JM et al. 2003; Scaffolds and biomaterials for tissue engineering: a review of clinical applications. Clin Otolaryngol Allied Sci 28: 165–172.
    • (2003) Clin Otolaryngol Allied Sci , vol.28 , pp. 165-172
    • Vats, A.1    Tolley, N.S.2    Polak, J.M.3
  • 57
    • 14844322862 scopus 로고    scopus 로고
    • Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering
    • Williams JM, Adewunmi A, Schek RM et al. 2005; Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26: 4817–4827.
    • (2005) Biomaterials , vol.26 , pp. 4817-4827
    • Williams, J.M.1    Adewunmi, A.2    Schek, R.M.3
  • 58
    • 40349106262 scopus 로고    scopus 로고
    • Improved biocomposite development of poly(vinyl alcohol) and hydroxyapatite for tissue engineering scaffold fabrication using selective laser sintering
    • Wiria FE, Chua CK, Leong KF et al. 2008; Improved biocomposite development of poly(vinyl alcohol) and hydroxyapatite for tissue engineering scaffold fabrication using selective laser sintering. J Mater Sci Mater Med 19: 989–996.
    • (2008) J Mater Sci Mater Med , vol.19 , pp. 989-996
    • Wiria, F.E.1    Chua, C.K.2    Leong, K.F.3
  • 59
    • 33751346057 scopus 로고    scopus 로고
    • Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering
    • Wiria FE, Leong KF, Chua CK et al. 2007; Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater 3: 1–12.
    • (2007) Acta Biomater , vol.3 , pp. 1-12
    • Wiria, F.E.1    Leong, K.F.2    Chua, C.K.3
  • 60
    • 0035671158 scopus 로고    scopus 로고
    • The design of scaffolds for use in tissue engineering. Part I. Traditional factors
    • Yang S, Leong KF, Du Z et al. 2001; The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7: 679–689.
    • (2001) Tissue Eng , vol.7 , pp. 679-689
    • Yang, S.1    Leong, K.F.2    Du, Z.3
  • 61
    • 0036191695 scopus 로고    scopus 로고
    • The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques
    • Yang S, Leong KF, Du Z et al. 2002; The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng 8: 1–11.
    • (2002) Tissue Eng , vol.8 , pp. 1-11
    • Yang, S.1    Leong, K.F.2    Du, Z.3
  • 62
    • 8144227180 scopus 로고    scopus 로고
    • Rapid prototyping in tissue engineering: challenges and potential
    • Yeong WY, Chua CK, Leong KF et al. 2004; Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 22: 643–652.
    • (2004) Trends Biotechnol , vol.22 , pp. 643-652
    • Yeong, W.Y.1    Chua, C.K.2    Leong, K.F.3
  • 63
    • 77956633477 scopus 로고    scopus 로고
    • Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering
    • Yeong WY, Sudarmadji N, Yu HY et al. 2010; Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater 6: 2028–2034.
    • (2010) Acta Biomater , vol.6 , pp. 2028-2034
    • Yeong, W.Y.1    Sudarmadji, N.2    Yu, H.Y.3
  • 64
    • 18744373595 scopus 로고    scopus 로고
    • Human adipose tissue is a source of multipotent stem cells
    • Zuk PA, Zhu M, Ashjian P et al. 2002; Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13: 4279–4295.
    • (2002) Mol Biol Cell , vol.13 , pp. 4279-4295
    • Zuk, P.A.1    Zhu, M.2    Ashjian, P.3
  • 65
    • 0035067539 scopus 로고    scopus 로고
    • Multilineage cells from human adipose tissue: implications for cell-based therapies
    • Zuk PA, Zhu M, Mizuno H et al. 2001; Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7: 211–228.
    • (2001) Tissue Eng , vol.7 , pp. 211-228
    • Zuk, P.A.1    Zhu, M.2    Mizuno, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.