메뉴 건너뛰기




Volumn 87, Issue 7, 2015, Pages 603-615

immunoClust-An automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets

Author keywords

Iterative model based clustering; Key terms: automated multivariate clustering; Probability based metaclustering; Rare population detection

Indexed keywords

ALGORITHM; BIOLOGY; BLOOD CELL; CLUSTER ANALYSIS; CYTOLOGY; FLOW CYTOMETRY; HUMAN; INFORMATION PROCESSING; MULTIVARIATE ANALYSIS; PROCEDURES;

EID: 84932194111     PISSN: 15524922     EISSN: 15524930     Source Type: Journal    
DOI: 10.1002/cyto.a.22626     Document Type: Article
Times cited : (49)

References (36)
  • 2
    • 48849105886 scopus 로고    scopus 로고
    • Statistical mixture modeling for cell subtype identification in flow cytometry
    • Chan C, Feng F, Ottinger J, Foster D, West M, Kepler TB. Statistical mixture modeling for cell subtype identification in flow cytometry. Cytometry A 2008;73A:693-701.
    • (2008) Cytometry A , vol.73A , pp. 693-701
    • Chan, C.1    Feng, F.2    Ottinger, J.3    Foster, D.4    West, M.5    Kepler, T.B.6
  • 3
    • 77949555869 scopus 로고    scopus 로고
    • Merging mixture components for cell population identification in flow cytometry
    • Finak G, Bashashati A, Brinkman R, Gottardo R. Merging mixture components for cell population identification in flow cytometry. Adv Bioinformatics 2009:247646.
    • (2009) Adv Bioinformatics , pp. 247646
    • Finak, G.1    Bashashati, A.2    Brinkman, R.3    Gottardo, R.4
  • 4
    • 84865139571 scopus 로고    scopus 로고
    • flowPeaks: A fast unsupervised clustering for flow cytometry data via K-means and density peak finding
    • Ge Y, Sealfon SC. flowPeaks: A fast unsupervised clustering for flow cytometry data via K-means and density peak finding. Bioinformatics 2012;28:2052-2058.
    • (2012) Bioinformatics , vol.28 , pp. 2052-2058
    • Ge, Y.1    Sealfon, S.C.2
  • 5
    • 42049123647 scopus 로고    scopus 로고
    • Automated gating of flow cytometry data via robust model-based clustering
    • Lo K, Brinkman RR, Gottardo R. Automated gating of flow cytometry data via robust model-based clustering. Cytometry A 2008;73A:321-332.
    • (2008) Cytometry A , vol.73A , pp. 321-332
    • Lo, K.1    Brinkman, R.R.2    Gottardo, R.3
  • 6
    • 84899064968 scopus 로고    scopus 로고
    • SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 1: Algorithm design
    • Naim I, Datta S, Rebhahn J, Cavenaugh JS, Mosmann TR, Sharma G. SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 1: Algorithm design. Cytometry A 2014;85A:408-421.
    • (2014) Cytometry A , vol.85A , pp. 408-421
    • Naim, I.1    Datta, S.2    Rebhahn, J.3    Cavenaugh, J.S.4    Mosmann, T.R.5    Sharma, G.6
  • 11
    • 84899129003 scopus 로고    scopus 로고
    • SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 2: Biological evaluation
    • Mosmann TR, Naim I, Rebhahn J, Datta S, Cavenaugh JS, Weaver JM, Sharma G. SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 2: Biological evaluation. Cytometry A 2014;85A:422-433.
    • (2014) Cytometry A , vol.85A , pp. 422-433
    • Mosmann, T.R.1    Naim, I.2    Rebhahn, J.3    Datta, S.4    Cavenaugh, J.S.5    Weaver, J.M.6    Sharma, G.7
  • 12
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via EM algorithm
    • Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via EM algorithm. J R Stat Soc Ser B 1977;39:1-38.
    • (1977) J R Stat Soc Ser B , vol.39 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 14
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • Fraley C, Raftery AE. Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc 2002:611-631.
    • (2002) J Am Stat Assoc , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 15
    • 15944406293 scopus 로고    scopus 로고
    • Incremental Model-Based Clustering for Large Datasets with Small Clusters
    • Technical Report No 439, Dept of Stat, University of Washington;
    • Fraley C, Raftery AE, Wehrens R. Incremental Model-Based Clustering for Large Datasets with Small Clusters. Technical Report No 439, Dept of Stat, University of Washington; 2003.
    • (2003)
    • Fraley, C.1    Raftery, A.E.2    Wehrens, R.3
  • 16
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann Stat 1978;6:461-464.
    • (1978) Ann Stat , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 17
    • 0034228914 scopus 로고    scopus 로고
    • Assessing a mixture model for clustering with the integrated classification likelihood
    • Biernacki C, Celeux G, Govaert G. Assessing a mixture model for clustering with the integrated classification likelihood. IEEE Trans Pattern Anal Machine Intell 2000;22:719-725.
    • (2000) IEEE Trans Pattern Anal Machine Intell , vol.22 , pp. 719-725
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 18
    • 0041407143 scopus 로고    scopus 로고
    • Robust mixture modelling using the t distribution
    • Peel D, McLachlan GJ. Robust mixture modelling using the t distribution. Stat Comput 2000;10:339-348.
    • (2000) Stat Comput , vol.10 , pp. 339-348
    • Peel, D.1    McLachlan, G.J.2
  • 20
    • 0000585273 scopus 로고
    • On a measure of divergence between two multinominial populations
    • Bhattacharyya A. On a measure of divergence between two multinominial populations. Sankhya Indian J Stat 1946;7:401-406.
    • (1946) Sankhya Indian J Stat , vol.7 , pp. 401-406
    • Bhattacharyya, A.1
  • 21
    • 77955091542 scopus 로고    scopus 로고
    • Methods for merging Gaussian mixture components
    • Hennig C. Methods for merging Gaussian mixture components. Adv Data Anal Classif 2010;4:3-34.
    • (2010) Adv Data Anal Classif , vol.4 , pp. 3-34
    • Hennig, C.1
  • 22
    • 77956554104 scopus 로고    scopus 로고
    • Differential entropic clustering of multivariate Gaussians
    • Schölkopf B, Platt J, Hofmann T, editors. ; Cambridge MA: The MIT Press;
    • Davis JV, Dhillon I. Differential entropic clustering of multivariate Gaussians. In: Schölkopf B, Platt J, Hofmann T, editors. Adv Neural Inf Proc Syst 19; Cambridge MA: The MIT Press; 2006. p 337-344.
    • (2006) Adv Neural Inf Proc Syst 19 , pp. 337-344
    • Davis, J.V.1    Dhillon, I.2
  • 23
    • 84898983549 scopus 로고    scopus 로고
    • Hierarchical clustering of a mixture model
    • Saul LK, Weiss Y, Bottou L, editors. ; Cambridge, MA, London, GB: The MIT Press;
    • Goldberger J, Roweis S. Hierarchical clustering of a mixture model. In: Saul LK, Weiss Y, Bottou L, editors. Adv Neural Inf Process Syst 17; Cambridge, MA, London, GB: The MIT Press; 2005. p 505-512.
    • (2005) Adv Neural Inf Process Syst 17 , pp. 505-512
    • Goldberger, J.1    Roweis, S.2
  • 25
    • 84932198570 scopus 로고    scopus 로고
    • immunoClust, MACS-depleted populations datasets 2010. Available at: URL. Accessed June
    • immunoClust, MACS-depleted populations datasets 2010. Available at: URL http://flowrepository.org/id/FR-FCM-ZZWB. Accessed June 2014.
    • (2014)
  • 26
    • 84932199896 scopus 로고    scopus 로고
    • Accessed on Oct
    • FlowCAP-III, EQAPOL. Available at: URL http://flowrepository.org/id/FR-FCM-ZZ35. Accessed on Oct 2012.
    • (2012)
  • 27
    • 84932197558 scopus 로고    scopus 로고
    • immunoClust, CyTOF sample dataset. Available at: URL. Accessed on June 2014.
    • immunoClust, CyTOF sample dataset. Available at: URL http://flowrepository.org/id/FR-FCM-ZZWC. Accessed on June 2014.
  • 30
    • 84908548681 scopus 로고    scopus 로고
    • A non-parametric Bayesian model for joint cell clustering and cluster matching: Identification of anomalous sample phenotypes with random effects
    • Dundar M, Akova F, Yerebakan HZ, Rajwa B. A non-parametric Bayesian model for joint cell clustering and cluster matching: Identification of anomalous sample phenotypes with random effects. BMC Bioinformatics 2014;15:314.
    • (2014) BMC Bioinformatics , vol.15 , pp. 314
    • Dundar, M.1    Akova, F.2    Yerebakan, H.Z.3    Rajwa, B.4
  • 36
    • 84932194939 scopus 로고    scopus 로고
    • immunoClust. immunoClust - Automated Pipeline for Population Detection in Flow Cytometry. ; R package version 0.99.2.
    • Soerensen T. immunoClust. immunoClust - Automated Pipeline for Population Detection in Flow Cytometry. 2015; R package version 0.99.2.
    • (2015)
    • Soerensen, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.