메뉴 건너뛰기




Volumn 89, Issue 1, 2016, Pages 22-29

FloReMi: Flow density survival regression using minimal feature redundancy

Author keywords

Feature selection; Machine learning; Polychromatic flow cytometry; Survival time prediction

Indexed keywords

ACQUIRED IMMUNODEFICIENCY SYNDROME; ALGORITHM; BENCHMARKING; BIOLOGY; CLUSTER ANALYSIS; CYTOLOGY; DISEASE COURSE; FLOW CYTOMETRY; HUMAN; HUMAN IMMUNODEFICIENCY VIRUS INFECTION; MACHINE LEARNING; MORTALITY; PATHOLOGY; PROCEDURES; REGRESSION ANALYSIS; STAINING; STATISTICAL ANALYSIS; T LYMPHOCYTE;

EID: 84983191355     PISSN: 15524922     EISSN: 15524930     Source Type: Journal    
DOI: 10.1002/cyto.a.22734     Document Type: Note
Times cited : (36)

References (29)
  • 1
    • 42049123647 scopus 로고    scopus 로고
    • Automated gating of flow cytometry data via robust model-based clustering
    • Lo K, Brinkman R, Gottardo R. Automated gating of flow cytometry data via robust model-based clustering. Cytom A 2008;73A:321-332.
    • (2008) Cytom A , vol.73A , pp. 321-332
    • Lo, K.1    Brinkman, R.2    Gottardo, R.3
  • 2
    • 77957550165 scopus 로고    scopus 로고
    • Misty mountain clustering: Application to fast unsupervised flow cytometry gating
    • Sugar I, Sealfon S. Misty mountain clustering: Application to fast unsupervised flow cytometry gating. BMC Bioinform 2010;11:502.
    • (2010) BMC Bioinform , vol.11 , pp. 502
    • Sugar, I.1    Sealfon, S.2
  • 3
    • 77954938186 scopus 로고    scopus 로고
    • Data reduction for spectral clustering to analyze high throughput flow cytometry data
    • Zare H, Shooshtari P, Gupta A, Brinkman R. Data reduction for spectral clustering to analyze high throughput flow cytometry data. BMC Bioinform 2010;11:403.
    • (2010) BMC Bioinform , vol.11 , pp. 403
    • Zare, H.1    Shooshtari, P.2    Gupta, A.3    Brinkman, R.4
  • 4
    • 78650436333 scopus 로고    scopus 로고
    • Rapid cell population identification in flow cytometry data
    • Aghaeepour N, Nikolic R, Hoos HH, Brinkman RR. Rapid cell population identification in flow cytometry data. Cytom A 2011;79A:6-13.
    • (2011) Cytom A , vol.79A , pp. 6-13
    • Aghaeepour, N.1    Nikolic, R.2    Hoos, H.H.3    Brinkman, R.R.4
  • 6
    • 84865139571 scopus 로고    scopus 로고
    • flowPeak: A fast unsupervised clustering for flow cytometry data via K-means and density peak finding
    • Ge Y, Sealfon S. flowPeak: A fast unsupervised clustering for flow cytometry data via K-means and density peak finding. Bioinformatics 2014;28:2052-2058.
    • (2014) Bioinformatics , vol.28 , pp. 2052-2058
    • Ge, Y.1    Sealfon, S.2
  • 7
    • 84899064968 scopus 로고    scopus 로고
    • Swift: Scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 1: Algorithm design
    • Naim I, Datta S, Rebhahn J, Cavenaugh JS, Mosmann TR, Sharma G. Swift: Scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 1: Algorithm design. Cytom A 2014;85A:408-421.
    • (2014) Cytom A , vol.85A , pp. 408-421
    • Naim, I.1    Datta, S.2    Rebhahn, J.3    Cavenaugh, J.S.4    Mosmann, T.R.5    Sharma, G.6
  • 11
    • 84899506044 scopus 로고    scopus 로고
    • Enhanced flowType/RchyOptimyx: A bioconductor pipeline for discovery in high-dimensional cytometry data
    • O'Neill K, Jalali A, Aghaeepour N, Hoos H, Brinkman RR. Enhanced flowType/RchyOptimyx: A bioconductor pipeline for discovery in high-dimensional cytometry data. Bioinformatics 2014;30:1329-1330.
    • (2014) Bioinformatics , vol.30 , pp. 1329-1330
    • O'Neill, K.1    Jalali, A.2    Aghaeepour, N.3    Hoos, H.4    Brinkman, R.R.5
  • 14
    • 33745697199 scopus 로고    scopus 로고
    • Cox Proportional-Hazards Regression for Survival Data in R
    • 2nd ed. Thousand Oaks CA: Sage .
    • Fox J, Weisberg S. Cox Proportional-Hazards Regression for Survival Data in R An R Companion to Applied Regression, 2nd ed. Thousand Oaks CA: Sage 2011.
    • (2011) An R Companion to Applied Regression
    • Fox, J.1    Weisberg, S.2
  • 15
    • 0023441165 scopus 로고
    • Time, a quality-control parameter in flow cytometry
    • Watson JV. Time, a quality-control parameter in flow cytometry. Cytometry 1987;8:646-649.
    • (1987) Cytometry , vol.8 , pp. 646-649
    • Watson, J.V.1
  • 16
    • 84983137943 scopus 로고    scopus 로고
    • flowClean: flowClean. R package version 1.2.0.
    • Fletez-Brant K. flowClean: flowClean. R package version 1.2.0. http://www.bioconductor.org/packages/release/bioc/html/flowClean.html
    • Fletez-Brant, K.1
  • 18
    • 77956489942 scopus 로고    scopus 로고
    • OMIP-001: Quality and phenotype of Ag-responsive human T-cells
    • Mahnke YD, Roederer M. OMIP-001: Quality and phenotype of Ag-responsive human T-cells. Cytom A 2010;77A:819-820.
    • (2010) Cytom A , vol.77A , pp. 819-820
    • Mahnke, Y.D.1    Roederer, M.2
  • 19
    • 84890588882 scopus 로고    scopus 로고
    • flowCore: Basic structures for flow cytometry data
    • R package version 1.32.0.
    • Ellis B, Haaland P, Hahne F, Le Meur N, Gopalakrishnan N, Spidlen J. flowCore: Basic structures for flow cytometry data. R package version 1.32.0. http://www.bioconductor.org/packages/release/bioc/html/flowCore.html
    • Ellis, B.1    Haaland, P.2    Hahne, F.3    Le Meur, N.4    Gopalakrishnan, N.5    Spidlen, J.6
  • 20
    • 84928189767 scopus 로고    scopus 로고
    • flowDensity: Reproducing manual gating of flow cytometry data by automated density-based cell population identification
    • Malek M, Taghiyar MJ, Chong L, Finak G, Gottardo R, Brinkman RR. flowDensity: Reproducing manual gating of flow cytometry data by automated density-based cell population identification. Bioinformatics 2015;31:606-607.
    • (2015) Bioinformatics , vol.31 , pp. 606-607
    • Malek, M.1    Taghiyar, M.J.2    Chong, L.3    Finak, G.4    Gottardo, R.5    Brinkman, R.R.6
  • 23
    • 0030069896 scopus 로고    scopus 로고
    • Tutorial in biostatistics multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
    • Harrell FE, Lee KL, Mark DB. Tutorial in biostatistics multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 1996;15:361-387.
    • (1996) Stat Med , vol.15 , pp. 361-387
    • Harrell, F.E.1    Lee, K.L.2    Mark, D.B.3
  • 24
    • 84946220296 scopus 로고    scopus 로고
    • Random Forests for Survival, Regression and Classification (RF-SRC)
    • Ishwaran H, Kogalur UB. Random Forests for Survival, Regression and Classification (RF-SRC). R package version 1.5.5. 2014. https://cran.r-project.org/web/packages/randomForestSRC/
    • (2014) R package version 1.5.5.
    • Ishwaran, H.1    Kogalur, U.B.2
  • 25
    • 84863302503 scopus 로고    scopus 로고
    • Coordinate descent methods for the penalized semiparametric additive hazards model
    • Gorst-Rasmussen A, Scheike TH. Coordinate descent methods for the penalized semiparametric additive hazards model. J Stat Software 2012;47:1-17.
    • (2012) J Stat Software , vol.47 , pp. 1-17
    • Gorst-Rasmussen, A.1    Scheike, T.H.2
  • 26
    • 77954223563 scopus 로고    scopus 로고
    • FlowFP: A bioconductor package for fingerprinting flow cytometric data
    • Rogers WT, Holyst HA. FlowFP: A bioconductor package for fingerprinting flow cytometric data. Adv Bioinform 2009. Article ID 193947, 11 pages.
    • (2009) Adv Bioinform , pp. 11
    • Rogers, W.T.1    Holyst, H.A.2
  • 28
    • 84932195404 scopus 로고    scopus 로고
    • gEM/GANN: A multivariate computational strategy for auto-characterizing relationships between cellular and clinical phenotypes and predicting disease progression time using high-dimensional flow cytometry data
    • Tong DL, Ball GR, Pockley AG. gEM/GANN: A multivariate computational strategy for auto-characterizing relationships between cellular and clinical phenotypes and predicting disease progression time using high-dimensional flow cytometry data. Cytom A 2015;87:616-623.
    • (2015) Cytom A , vol.87 , pp. 616-623
    • Tong, D.L.1    Ball, G.R.2    Pockley, A.G.3
  • 29
    • 77954296648 scopus 로고    scopus 로고
    • Good cell, bad cell: Flow cytometry reveals T-cell subsets important in HIV disease
    • Chattopadhyay PK, Roederer M. Good cell, bad cell: Flow cytometry reveals T-cell subsets important in HIV disease. Cytom A 2010;77A:614-622.
    • (2010) Cytom A , vol.77A , pp. 614-622
    • Chattopadhyay, P.K.1    Roederer, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.