메뉴 건너뛰기




Volumn 17, Issue 1, 2016, Pages

BayesFlow: Latent modeling of flow cytometry cell populations

Author keywords

Bayesian hierarchical models; Flow cytometry; Model based clustering

Indexed keywords

CELL CULTURE; CELL PROLIFERATION; CELLS; CYTOLOGY; DATA HANDLING; FLOW CYTOMETRY; HIERARCHICAL SYSTEMS;

EID: 84953851427     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-015-0862-z     Document Type: Article
Times cited : (27)

References (33)
  • 4
    • 84933509460 scopus 로고    scopus 로고
    • Automated flow cytometric analysis across large numbers of samples and cell types
    • Chen X, Hasan M, Libri V, Urrutia A, Beitz B, Rouilly V, et al.Automated flow cytometric analysis across large numbers of samples and cell types. Clin Immunol. 2015; 157(2):249-60.
    • (2015) Clin Immunol. , vol.157 , Issue.2 , pp. 249-260
    • Chen, X.1    Hasan, M.2    Libri, V.3    Urrutia, A.4    Beitz, B.5    Rouilly, V.6
  • 7
    • 42049123647 scopus 로고    scopus 로고
    • Automated gating of flow cytometry data via robust model-based clustering
    • Lo K, Brinkman RR, Gottardo R. Automated gating of flow cytometry data via robust model-based clustering. Cytometry Part A. 2008; 73(4):321-32.
    • (2008) Cytometry Part A , vol.73 , Issue.4 , pp. 321-332
    • Lo, K.1    Brinkman, R.R.2    Gottardo, R.3
  • 8
    • 42949083636 scopus 로고    scopus 로고
    • Mixture modeling approach to flow cytometry data
    • Boedigheimer MJ, Ferbas J. Mixture modeling approach to flow cytometry data. Cytometry Part A. 2008; 73(5):421-9.
    • (2008) Cytometry Part A , vol.73 , Issue.5 , pp. 421-429
    • Boedigheimer, M.J.1    Ferbas, J.2
  • 9
    • 48849105886 scopus 로고    scopus 로고
    • Statistical mixture modeling for cell subtype identification in flow cytometry
    • Chan C, Feng F, Ottinger J, Foster D, West M, Kepler TB. Statistical mixture modeling for cell subtype identification in flow cytometry. Cytometry Part A. 2008; 73(8):693-701.
    • (2008) Cytometry Part A , vol.73 , Issue.8 , pp. 693-701
    • Chan, C.1    Feng, F.2    Ottinger, J.3    Foster, D.4    West, M.5    Kepler, T.B.6
  • 11
    • 84888114245 scopus 로고    scopus 로고
    • Application of user-guided automated cytometric data analysis to large-scale immunoprofiling of invariant natural killer T cells
    • Hu X, Kim H, Brennan PJ, Han B, Baecher-Allan CM, De Jager PL, et al.Application of user-guided automated cytometric data analysis to large-scale immunoprofiling of invariant natural killer T cells. Proc Natl Acad Sci. 2013; 110(47):19030-19035.
    • (2013) Proc Natl Acad Sci , vol.110 , Issue.47 , pp. 19030-19035
    • Hu, X.1    Kim, H.2    Brennan, P.J.3    Han, B.4    Baecher-Allan, C.M.5    De Jager, P.L.6
  • 12
    • 84899064968 scopus 로고    scopus 로고
    • Swift scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 1: Algorithm design
    • 408-321.
    • Naim I, Datta S, Rebhahn J, Cavenaugh JS, Mosmann TR, Sharma G. Swift scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 1: Algorithm design. Cytometry Part A. 2014; 85(5):408-321.
    • (2014) Cytometry Part A , vol.85 , Issue.5
    • Naim, I.1    Datta, S.2    Rebhahn, J.3    Cavenaugh, J.S.4    Mosmann, T.R.5    Sharma, G.6
  • 13
    • 77956565464 scopus 로고    scopus 로고
    • Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data
    • Qian Y, Wei C, Eun-Hyung Lee F, Campbell J, Halliley J, Lee JA, et al.Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data. Cytometry Part B: Clinical Cytometry. 2010; 78(S1):69-82.
    • (2010) Cytometry Part B: Clinical Cytometry , vol.78 , pp. 69-82
    • Qian, Y.1    Wei, C.2    Eun-Hyung Lee, F.3    Campbell, J.4    Halliley, J.5    Lee, J.A.6
  • 14
    • 77954938186 scopus 로고    scopus 로고
    • Data reduction for spectral clustering to analyze high throughput flow cytometry data
    • Zare H, Shooshtari P, Gupta A, Brinkman RR. Data reduction for spectral clustering to analyze high throughput flow cytometry data. BMC Bioinforma. 2010; 11:403.
    • (2010) BMC Bioinforma , vol.11 , pp. 403
    • Zare, H.1    Shooshtari, P.2    Gupta, A.3    Brinkman, R.R.4
  • 18
    • 84865139571 scopus 로고    scopus 로고
    • flowPeaks: a fast unsupervised clustering for flow cytometry data via k-means and density peak finding
    • Ge Y, Sealfon SC. flowPeaks: a fast unsupervised clustering for flow cytometry data via k-means and density peak finding. Bioinforma. 2012; 28(15):2052-058.
    • (2012) Bioinforma , vol.28 , Issue.15 , pp. 2052-2058
    • Ge, Y.1    Sealfon, S.C.2
  • 19
    • 84874666550 scopus 로고    scopus 로고
    • Critical assessment of automated flow cytometry data analysis techniques.
    • The FlowCAP Consortium, The DREAM Consortium, Hoos H, Mosmann TR, et al.
    • Aghaeepour N, Finak G, The FlowCAP Consortium, The DREAM Consortium, Hoos H, Mosmann TR, et al.Critical assessment of automated flow cytometry data analysis techniques. Nature Methods. 2013; 10(3):228-38.
    • (2013) Nature Methods. , vol.10 , Issue.3 , pp. 228-238
    • Aghaeepour, N.1    Finak, G.2
  • 21
    • 84880849822 scopus 로고    scopus 로고
    • Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples
    • Cron A, Gouttefangeas C, Frelinger J, Lin L, Singh SK, Britten CM, et al.Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples. PLoS Comput Biol. 2013; 9(7):1003130.
    • (2013) PLoS Comput Biol , vol.9 , Issue.7 , pp. 1003130
    • Cron, A.1    Gouttefangeas, C.2    Frelinger, J.3    Lin, L.4    Singh, S.K.5    Britten, C.M.6
  • 22
    • 84908548681 scopus 로고    scopus 로고
    • A non-parametric Bayesian model for joint cell clustering and cluster matching: Identification of anomalous sample phenotypes with random effects
    • Dundar M, Akova F, Yerebakan HZ, Rajwa B. A non-parametric Bayesian model for joint cell clustering and cluster matching: Identification of anomalous sample phenotypes with random effects. BMC Bioinforma. 2014; 15:314.
    • (2014) BMC Bioinforma , vol.15 , pp. 314
    • Dundar, M.1    Akova, F.2    Yerebakan, H.Z.3    Rajwa, B.4
  • 23
    • 77749242735 scopus 로고    scopus 로고
    • Bayesian inference for finite mixtures of univariate and multivariate skew-normal and skew-t distributions
    • Frühwirth-Schnatter S, Pyne S. Bayesian inference for finite mixtures of univariate and multivariate skew-normal and skew-t distributions. Biostat. 2010; 11(2):317-36.
    • (2010) Biostat , vol.11 , Issue.2 , pp. 317-336
    • Frühwirth-Schnatter, S.1    Pyne, S.2
  • 24
    • 77949555869 scopus 로고    scopus 로고
    • Merging mixture components for cell population identification in flow cytometry
    • 2009.
    • Finak G, Bashashati A, Brinkman R, Gottardo R. Merging mixture components for cell population identification in flow cytometry. Advances in Bioinforma. 2009; 2009:12. http://www.hindawi.com/journals/abi/2009/247646/cta/.
    • (2009) Advances in Bioinforma. , pp. 12
    • Finak, G.1    Bashashati, A.2    Brinkman, R.3    Gottardo, R.4
  • 26
    • 77955091542 scopus 로고    scopus 로고
    • Methods for merging Gaussian mixture components.
    • Hennig C. Methods for merging Gaussian mixture components. Adv Data Anal Class; 4(1):3-34.
    • Adv Data Anal Class , vol.4 , Issue.1 , pp. 3-34
    • Hennig, C.1
  • 27
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • Fraley C, Raftery AE. How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput J. 1998; 41(8):578-88.
    • (1998) Comput J , vol.41 , Issue.8 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 30
    • 0002643986 scopus 로고
    • The dip test of unimodality
    • Hartigan JA, Hartigan PM. The dip test of unimodality. Annal Stat. 1985; 13(1):70-84.
    • (1985) Annal Stat. , vol.13 , Issue.1 , pp. 70-84
    • Hartigan, J.A.1    Hartigan, P.M.2
  • 32
    • 84970881984 scopus 로고    scopus 로고
    • healthyFlowData: Healthy Dataset Used by the flowMatch Package.
    • Azad A. healthyFlowData: Healthy Dataset Used by the flowMatch Package. R package version 1.2.0. 2013.
    • (2013) R package version 1.2.0.
    • Azad, A.1
  • 33
    • 0035503984 scopus 로고    scopus 로고
    • Spectral compensation for flow cytometry: Visualization artifacts, limitations, and caveats
    • Roederer M. Spectral compensation for flow cytometry: Visualization artifacts, limitations, and caveats. Cytometry. 2001; 45(3):194-205.
    • (2001) Cytometry , vol.45 , Issue.3 , pp. 194-205
    • Roederer, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.