-
3
-
-
84892763223
-
Flow cytometry bioinformatics
-
O'Neill K, Aghaeepour N, Špidlen J, Brinkman R. Flow cytometry bioinformatics. PLoS Comput Biol. 2013; 9(12):1003365.
-
(2013)
PLoS Comput Biol
, vol.9
, Issue.12
, pp. 1003365
-
-
O'Neill, K.1
Aghaeepour, N.2
Špidlen, J.3
Brinkman, R.4
-
4
-
-
84933509460
-
Automated flow cytometric analysis across large numbers of samples and cell types
-
Chen X, Hasan M, Libri V, Urrutia A, Beitz B, Rouilly V, et al.Automated flow cytometric analysis across large numbers of samples and cell types. Clin Immunol. 2015; 157(2):249-60.
-
(2015)
Clin Immunol.
, vol.157
, Issue.2
, pp. 249-260
-
-
Chen, X.1
Hasan, M.2
Libri, V.3
Urrutia, A.4
Beitz, B.5
Rouilly, V.6
-
5
-
-
84862774274
-
Harmonization of the intracellular cytokine staining assay
-
Welters MJ, Gouttefangeas C, Ramwadhdoebe TH, Letsch A, Ottensmeier CH, Britten CM, et al.Harmonization of the intracellular cytokine staining assay. Cancer Immunol Immunother. 2012; 61(7):967-78.
-
(2012)
Cancer Immunol Immunother
, vol.61
, Issue.7
, pp. 967-978
-
-
Welters, M.J.1
Gouttefangeas, C.2
Ramwadhdoebe, T.H.3
Letsch, A.4
Ottensmeier, C.H.5
Britten, C.M.6
-
6
-
-
77249135054
-
Per-channel basis normalization methods for flow cytometry data
-
Hahne F, Khodabakhshi AH, Bashashati A, Wong CJ, Gascoyne RD, Weng AP, et al.Per-channel basis normalization methods for flow cytometry data. Cytometry Part A. 2010; 77(2):121-31.
-
(2010)
Cytometry Part A
, vol.77
, Issue.2
, pp. 121-131
-
-
Hahne, F.1
Khodabakhshi, A.H.2
Bashashati, A.3
Wong, C.J.4
Gascoyne, R.D.5
Weng, A.P.6
-
7
-
-
42049123647
-
Automated gating of flow cytometry data via robust model-based clustering
-
Lo K, Brinkman RR, Gottardo R. Automated gating of flow cytometry data via robust model-based clustering. Cytometry Part A. 2008; 73(4):321-32.
-
(2008)
Cytometry Part A
, vol.73
, Issue.4
, pp. 321-332
-
-
Lo, K.1
Brinkman, R.R.2
Gottardo, R.3
-
8
-
-
42949083636
-
Mixture modeling approach to flow cytometry data
-
Boedigheimer MJ, Ferbas J. Mixture modeling approach to flow cytometry data. Cytometry Part A. 2008; 73(5):421-9.
-
(2008)
Cytometry Part A
, vol.73
, Issue.5
, pp. 421-429
-
-
Boedigheimer, M.J.1
Ferbas, J.2
-
9
-
-
48849105886
-
Statistical mixture modeling for cell subtype identification in flow cytometry
-
Chan C, Feng F, Ottinger J, Foster D, West M, Kepler TB. Statistical mixture modeling for cell subtype identification in flow cytometry. Cytometry Part A. 2008; 73(8):693-701.
-
(2008)
Cytometry Part A
, vol.73
, Issue.8
, pp. 693-701
-
-
Chan, C.1
Feng, F.2
Ottinger, J.3
Foster, D.4
West, M.5
Kepler, T.B.6
-
10
-
-
66649115648
-
Automated high-dimensional flow cytometric data analysis
-
Pyne S, Hu X, Wang K, Rossin E, Lin TI, Maier LM, et al.Automated high-dimensional flow cytometric data analysis. Proc Natl Acad Sci. 2009; 106(21):8519-524.
-
(2009)
Proc Natl Acad Sci
, vol.106
, Issue.21
, pp. 8519-8524
-
-
Pyne, S.1
Hu, X.2
Wang, K.3
Rossin, E.4
Lin, T.I.5
Maier, L.M.6
-
11
-
-
84888114245
-
Application of user-guided automated cytometric data analysis to large-scale immunoprofiling of invariant natural killer T cells
-
Hu X, Kim H, Brennan PJ, Han B, Baecher-Allan CM, De Jager PL, et al.Application of user-guided automated cytometric data analysis to large-scale immunoprofiling of invariant natural killer T cells. Proc Natl Acad Sci. 2013; 110(47):19030-19035.
-
(2013)
Proc Natl Acad Sci
, vol.110
, Issue.47
, pp. 19030-19035
-
-
Hu, X.1
Kim, H.2
Brennan, P.J.3
Han, B.4
Baecher-Allan, C.M.5
De Jager, P.L.6
-
12
-
-
84899064968
-
Swift scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 1: Algorithm design
-
408-321.
-
Naim I, Datta S, Rebhahn J, Cavenaugh JS, Mosmann TR, Sharma G. Swift scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 1: Algorithm design. Cytometry Part A. 2014; 85(5):408-321.
-
(2014)
Cytometry Part A
, vol.85
, Issue.5
-
-
Naim, I.1
Datta, S.2
Rebhahn, J.3
Cavenaugh, J.S.4
Mosmann, T.R.5
Sharma, G.6
-
13
-
-
77956565464
-
Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data
-
Qian Y, Wei C, Eun-Hyung Lee F, Campbell J, Halliley J, Lee JA, et al.Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data. Cytometry Part B: Clinical Cytometry. 2010; 78(S1):69-82.
-
(2010)
Cytometry Part B: Clinical Cytometry
, vol.78
, pp. 69-82
-
-
Qian, Y.1
Wei, C.2
Eun-Hyung Lee, F.3
Campbell, J.4
Halliley, J.5
Lee, J.A.6
-
14
-
-
77954938186
-
Data reduction for spectral clustering to analyze high throughput flow cytometry data
-
Zare H, Shooshtari P, Gupta A, Brinkman RR. Data reduction for spectral clustering to analyze high throughput flow cytometry data. BMC Bioinforma. 2010; 11:403.
-
(2010)
BMC Bioinforma
, vol.11
, pp. 403
-
-
Zare, H.1
Shooshtari, P.2
Gupta, A.3
Brinkman, R.R.4
-
15
-
-
80054768631
-
Extracting a cellular hierarchy from high-dimensional cytometry data with spade
-
Qiu P, Simonds EF, Bendall SC, Gibbs Jr KD, Bruggner RV, Linderman MD, et al.Extracting a cellular hierarchy from high-dimensional cytometry data with spade. Nature Biotechnol. 2011; 29(10):886-91.
-
(2011)
Nature Biotechnol
, vol.29
, Issue.10
, pp. 886-891
-
-
Qiu, P.1
Simonds, E.F.2
Bendall, S.C.3
Gibbs, K.D.4
Bruggner, R.V.5
Linderman, M.D.6
-
16
-
-
84903703398
-
Automated identification of stratifying signatures in cellular subpopulations
-
Bruggner RV, Bodenmiller B, Dill DL, Tibshirani RJ, Nolan GP. Automated identification of stratifying signatures in cellular subpopulations. Proc Natl Acad Sci. 2014; 111(26):2770-777.
-
(2014)
Proc Natl Acad Sci
, vol.111
, Issue.26
, pp. 2770-2777
-
-
Bruggner, R.V.1
Bodenmiller, B.2
Dill, D.L.3
Tibshirani, R.J.4
Nolan, G.P.5
-
17
-
-
78650436333
-
Rapid cell population identification in flow cytometry data
-
Aghaeepour N, Nikolic R, Hoos HH, Brinkman RR. Rapid cell population identification in flow cytometry data. Cytometry Part A. 2011; 79(1):6-13.
-
(2011)
Cytometry Part A
, vol.79
, Issue.1
, pp. 6-13
-
-
Aghaeepour, N.1
Nikolic, R.2
Hoos, H.H.3
Brinkman, R.R.4
-
18
-
-
84865139571
-
flowPeaks: a fast unsupervised clustering for flow cytometry data via k-means and density peak finding
-
Ge Y, Sealfon SC. flowPeaks: a fast unsupervised clustering for flow cytometry data via k-means and density peak finding. Bioinforma. 2012; 28(15):2052-058.
-
(2012)
Bioinforma
, vol.28
, Issue.15
, pp. 2052-2058
-
-
Ge, Y.1
Sealfon, S.C.2
-
19
-
-
84874666550
-
Critical assessment of automated flow cytometry data analysis techniques.
-
The FlowCAP Consortium, The DREAM Consortium, Hoos H, Mosmann TR, et al.
-
Aghaeepour N, Finak G, The FlowCAP Consortium, The DREAM Consortium, Hoos H, Mosmann TR, et al.Critical assessment of automated flow cytometry data analysis techniques. Nature Methods. 2013; 10(3):228-38.
-
(2013)
Nature Methods.
, vol.10
, Issue.3
, pp. 228-238
-
-
Aghaeepour, N.1
Finak, G.2
-
20
-
-
84888182236
-
Classifying immunophenotypes with templates from flow cytometry.
-
New York, NY, USA: ACM
-
Azad A, Khan A, Rajwa B, Pyne S, Pothen A. Classifying immunophenotypes with templates from flow cytometry. In: Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics. New York, NY, USA: ACM: 2013. p. 256.
-
(2013)
In: Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics.
, pp. 256
-
-
Azad, A.1
Khan, A.2
Rajwa, B.3
Pyne, S.4
Pothen, A.5
-
21
-
-
84880849822
-
Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples
-
Cron A, Gouttefangeas C, Frelinger J, Lin L, Singh SK, Britten CM, et al.Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples. PLoS Comput Biol. 2013; 9(7):1003130.
-
(2013)
PLoS Comput Biol
, vol.9
, Issue.7
, pp. 1003130
-
-
Cron, A.1
Gouttefangeas, C.2
Frelinger, J.3
Lin, L.4
Singh, S.K.5
Britten, C.M.6
-
22
-
-
84908548681
-
A non-parametric Bayesian model for joint cell clustering and cluster matching: Identification of anomalous sample phenotypes with random effects
-
Dundar M, Akova F, Yerebakan HZ, Rajwa B. A non-parametric Bayesian model for joint cell clustering and cluster matching: Identification of anomalous sample phenotypes with random effects. BMC Bioinforma. 2014; 15:314.
-
(2014)
BMC Bioinforma
, vol.15
, pp. 314
-
-
Dundar, M.1
Akova, F.2
Yerebakan, H.Z.3
Rajwa, B.4
-
23
-
-
77749242735
-
Bayesian inference for finite mixtures of univariate and multivariate skew-normal and skew-t distributions
-
Frühwirth-Schnatter S, Pyne S. Bayesian inference for finite mixtures of univariate and multivariate skew-normal and skew-t distributions. Biostat. 2010; 11(2):317-36.
-
(2010)
Biostat
, vol.11
, Issue.2
, pp. 317-336
-
-
Frühwirth-Schnatter, S.1
Pyne, S.2
-
24
-
-
77949555869
-
Merging mixture components for cell population identification in flow cytometry
-
2009.
-
Finak G, Bashashati A, Brinkman R, Gottardo R. Merging mixture components for cell population identification in flow cytometry. Advances in Bioinforma. 2009; 2009:12. http://www.hindawi.com/journals/abi/2009/247646/cta/.
-
(2009)
Advances in Bioinforma.
, pp. 12
-
-
Finak, G.1
Bashashati, A.2
Brinkman, R.3
Gottardo, R.4
-
25
-
-
77956671284
-
Combining mixture components for clustering
-
Baudry JP, Raftery AE, Celeux G, Lo K, Gottardo R. Combining mixture components for clustering. J Comput Graph Stat. 2010; 19(2):332-353.
-
(2010)
J Comput Graph Stat.
, vol.19
, Issue.2
, pp. 332-353
-
-
Baudry, J.P.1
Raftery, A.E.2
Celeux, G.3
Lo, K.4
Gottardo, R.5
-
26
-
-
77955091542
-
Methods for merging Gaussian mixture components.
-
Hennig C. Methods for merging Gaussian mixture components. Adv Data Anal Class; 4(1):3-34.
-
Adv Data Anal Class
, vol.4
, Issue.1
, pp. 3-34
-
-
Hennig, C.1
-
27
-
-
0032269108
-
How many clusters? Which clustering method? Answers via model-based cluster analysis
-
Fraley C, Raftery AE. How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput J. 1998; 41(8):578-88.
-
(1998)
Comput J
, vol.41
, Issue.8
, pp. 578-588
-
-
Fraley, C.1
Raftery, A.E.2
-
30
-
-
0002643986
-
The dip test of unimodality
-
Hartigan JA, Hartigan PM. The dip test of unimodality. Annal Stat. 1985; 13(1):70-84.
-
(1985)
Annal Stat.
, vol.13
, Issue.1
, pp. 70-84
-
-
Hartigan, J.A.1
Hartigan, P.M.2
-
32
-
-
84970881984
-
healthyFlowData: Healthy Dataset Used by the flowMatch Package.
-
Azad A. healthyFlowData: Healthy Dataset Used by the flowMatch Package. R package version 1.2.0. 2013.
-
(2013)
R package version 1.2.0.
-
-
Azad, A.1
-
33
-
-
0035503984
-
Spectral compensation for flow cytometry: Visualization artifacts, limitations, and caveats
-
Roederer M. Spectral compensation for flow cytometry: Visualization artifacts, limitations, and caveats. Cytometry. 2001; 45(3):194-205.
-
(2001)
Cytometry
, vol.45
, Issue.3
, pp. 194-205
-
-
Roederer, M.1
|