메뉴 건너뛰기




Volumn 1371, Issue , 2015, Pages 225-238

Standardized multi-color flow cytometry and computational biomarker discovery

Author keywords

Data analysis; Flow cytometry; Immune monitoring; Standardization

Indexed keywords

BIOLOGICAL MARKER;

EID: 84946562563     PISSN: 10643745     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-1-4939-3139-2_15     Document Type: Chapter
Times cited : (11)

References (52)
  • 2
    • 77649180577 scopus 로고    scopus 로고
    • Innate and adaptive immunosenescence
    • quiz 190–182
    • Agarwal S, Busse PJ (2010) Innate and adaptive immunosenescence. Ann Allergy Asthma Immunol 104:183–190, quiz 190–182
    • (2010) Ann Allergy Asthma Immunol , vol.104 , pp. 183-190
    • Agarwal, S.1    Busse, P.J.2
  • 3
    • 84890501668 scopus 로고    scopus 로고
    • The immune system and aging: A review
    • Epub 09512013 Nov 09513512
    • Castelo-Branco C, Soveral I (2014) The immune system and aging: a review. Gynecol Endocrinol 30:16–22, doi: 10.3109/0951359 0.09512013.09852531. Epub 09512013 Nov 09513512
    • (2014) Gynecol Endocrinol , vol.30 , pp. 16-22
    • Castelo-Branco, C.1    Soveral, I.2
  • 4
    • 84900988267 scopus 로고    scopus 로고
    • Chronic inflammation (Inflammaging) and its potential contribution to age-associated diseases
    • Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69:S4–S9. doi: 10.1093/gerona/glu1057
    • (2014) J Gerontol a Biol Sci Med Sci , vol.69 , pp. 4-9
    • Franceschi, C.1    Campisi, J.2
  • 5
    • 77952302657 scopus 로고    scopus 로고
    • Inflammaging (Inflammation + aging): A driving force for human aging based on an evolutionarily antagonistic pleiotropy theory?
    • Goto M (2008) Inflammaging (inflammation + aging): a driving force for human aging based on an evolutionarily antagonistic pleiotropy theory? Biosci Trends 2:218–230
    • (2008) Biosci Trends , vol.2 , pp. 218-230
    • Goto, M.1
  • 6
    • 84867647498 scopus 로고    scopus 로고
    • Inflammation in aging: Cause, effect, or both?
    • Jenny NS (2012) Inflammation in aging: cause, effect, or both? Discov Med 13:451–460
    • (2012) Discov Med , vol.13 , pp. 451-460
    • Jenny, N.S.1
  • 7
    • 84890832543 scopus 로고    scopus 로고
    • From “truly naive” to “exhausted senescent” T cells: When markers predict functionality
    • Epub 22013 Sep 22330
    • Larbi A, Fulop T (2014) From “truly naive” to “exhausted senescent” T cells: when markers predict functionality. Cytometry A 85:25–35, doi: 10.1002/cyto.a.22351. Epub 22013 Sep 22330
    • (2014) Cytometry A , vol.85 , pp. 25-35
    • Larbi, A.1    Fulop, T.2
  • 10
    • 84857647499 scopus 로고    scopus 로고
    • Standardizing immunophenotyping for the Human Immunology Project
    • Maecker HT, McCoy JP, Nussenblatt R (2012) Standardizing immunophenotyping for the Human Immunology Project. Nat Rev Immunol 12:191–200, doi: 110.1038/nri3158
    • (2012) Nat Rev Immunol , vol.12 , pp. 191-200
    • Maecker, H.T.1    McCoy, J.P.2    Nussenblatt, R.3
  • 11
    • 33749497954 scopus 로고    scopus 로고
    • Flow cytometry controls, instrument setup, and the determination of positivity
    • Maecker HT, Trotter J (2006) Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry A 69:1037–1042
    • (2006) Cytometry A , vol.69 , pp. 1037-1042
    • Maecker, H.T.1    Trotter, J.2
  • 12
    • 84946598038 scopus 로고    scopus 로고
    • R_Core_Team_(2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
    • R_Core_Team_(2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  • 13
    • 84872270747 scopus 로고    scopus 로고
    • Computational methods for evaluation of cell-based data assessment – bioconductor
    • Le Meur N (2013) Computational methods for evaluation of cell-based data assessment – bioconductor. Curr Opin Biotechnol 24:105–111
    • (2013) Curr Opin Biotechnol , vol.24 , pp. 105-111
    • Le Meur, N.1
  • 14
    • 33747885673 scopus 로고    scopus 로고
    • Bioconductor: An open source framework for bioinformatics and computational biology
    • Reimers M, Carey VJ (2006) Bioconductor: an open source framework for bioinformatics and computational biology. Methods Enzymol 411:119–134
    • (2006) Methods Enzymol , vol.411 , pp. 119-134
    • Reimers, M.1    Carey, V.J.2
  • 19
    • 77954197414 scopus 로고    scopus 로고
    • Webbased analysis and publication of flow cytometry experiments
    • Chapter 10: Unit10 17
    • Kotecha N, Krutzik PO, Irish JM (2010) Webbased analysis and publication of flow cytometry experiments. Curr Protoc Cytom Chapter 10: Unit10 17
    • (2010) Curr Protoc Cytom
    • Kotecha, N.1    Krutzik, P.O.2    Irish, J.M.3
  • 24
    • 84861477707 scopus 로고    scopus 로고
    • Inferring phenotypic properties from single-cell characteristics
    • Qiu P (2012) Inferring phenotypic properties from single-cell characteristics. PLoS One 7:e37038
    • (2012) Plos One , vol.7
    • Qiu, P.1
  • 26
    • 83855162815 scopus 로고    scopus 로고
    • Detection and monitoring of normal and leukemic cell populations with hierarchical clustering of flow cytometry data
    • Fiser K, Sieger T, Schumich A, Wood B, Irving J, Mejstrikova E, Dworzak MN (2012) Detection and monitoring of normal and leukemic cell populations with hierarchical clustering of flow cytometry data. Cytometry A 81:25–34
    • (2012) Cytometry A , vol.81 , pp. 25-34
    • Fiser, K.1    Sieger, T.2    Schumich, A.3    Wood, B.4    Irving, J.5    Mejstrikova, E.6    Dworzak, M.N.7
  • 27
    • 77954938186 scopus 로고    scopus 로고
    • Data reduction for spectral clustering to analyze high throughput flow cytometry data
    • Zare H, Shooshtari P, Gupta A, Brinkman RR (2010) Data reduction for spectral clustering to analyze high throughput flow cytometry data. BMC Bioinformatics 11:403
    • (2010) BMC Bioinformatics , vol.11 , pp. 403
    • Zare, H.1    Shooshtari, P.2    Gupta, A.3    Brinkman, R.R.4
  • 28
    • 84908548681 scopus 로고    scopus 로고
    • A non-parametric Bayesian model for joint cell clustering and cluster matching: Identification of anomalous sample phenotypes with random effects
    • Dundar M, Akova F, Yerebakan HZ, Rajwa B (2014) A non-parametric Bayesian model for joint cell clustering and cluster matching: identification of anomalous sample phenotypes with random effects. BMC Bioinformatics 15:314
    • (2014) BMC Bioinformatics , vol.15 , pp. 314
    • Dundar, M.1    Akova, F.2    Yerebakan, H.Z.3    Rajwa, B.4
  • 30
    • 84899129003 scopus 로고    scopus 로고
    • SWIFT-scalable clustering for automated identification of rare cell populations in large, high- dimensional flow cytometry datasets, part 2: Biological evaluation
    • Mosmann TR, Naim I, Rebhahn J, Datta S, Cavenaugh JS, Weaver JM, Sharma G (2014) SWIFT-scalable clustering for automated identification of rare cell populations in large, high- dimensional flow cytometry datasets, part 2: biological evaluation. Cytometry A 85:422–433
    • (2014) Cytometry A , vol.85 , pp. 422-433
    • Mosmann, T.R.1    Naim, I.2    Rebhahn, J.3    Datta, S.4    Cavenaugh, J.S.5    Weaver, J.M.6    Sharma, G.7
  • 35
    • 84881279992 scopus 로고    scopus 로고
    • Scoring relevancy of features based on combinatorial analysis of Lasso with application to lymphoma diagnosis
    • Zare H, Haffari G, Gupta A, Brinkman RR (2013) Scoring relevancy of features based on combinatorial analysis of Lasso with application to lymphoma diagnosis. BMC Genomics 14(Suppl 1):S14
    • (2013) BMC Genomics , vol.14 , pp. 14
    • Zare, H.1    Haffari, G.2    Gupta, A.3    Brinkman, R.R.4
  • 36
    • 4444371602 scopus 로고    scopus 로고
    • Towards sound epistemological foundations of statistical methods for high-dimensional biology
    • Mehta T, Tanik M, Allison DB (2004) Towards sound epistemological foundations of statistical methods for high-dimensional biology. Nat Genet 36:943–947
    • (2004) Nat Genet , vol.36 , pp. 943-947
    • Mehta, T.1    Tanik, M.2    Allison, D.B.3
  • 38
    • 40749111960 scopus 로고    scopus 로고
    • Using flow Viz to visualize flow cytometry data
    • Sarkar D, Le Meur N, Gentleman R (2008) Using flow Viz to visualize flow cytometry data. Bioinformatics 24:878–879
    • (2008) Bioinformatics , vol.24 , pp. 878-879
    • Sarkar, D.1    Le Meur, N.2    Gentleman, R.3
  • 40
    • 84866658121 scopus 로고    scopus 로고
    • QUAliFiER: An automated pipeline for quality assessment of gated flow cytometry data
    • Finak G, Jiang W, Pardo J, Asare A, Gottardo R (2012) QUAliFiER: an automated pipeline for quality assessment of gated flow cytometry data. BMC Bioinformatics 13:252
    • (2012) BMC Bioinformatics , vol.13 , pp. 252
    • Finak, G.1    Jiang, W.2    Pardo, J.3    Asare, A.4    Gottardo, R.5
  • 41
    • 0035450349 scopus 로고    scopus 로고
    • Probability binning comparison: A metric for quantitating univariate distribution differences
    • Roederer M, Treister A, Moore W, Herzenberg LA (2001) Probability binning comparison: a metric for quantitating univariate distribution differences. Cytometry 45:37–46
    • (2001) Cytometry , vol.45 , pp. 37-46
    • Roederer, M.1    Treister, A.2    Moore, W.3    Herzenberg, L.A.4
  • 42
    • 77954223563 scopus 로고    scopus 로고
    • Flow FP: A Bioconductor Package for Fingerprinting Flow Cytometric Data
    • Epub 2009 Sep 24. PubMed PMID: 19956416; PubMed Central PMCID: PMC2777013
    • Rogers WT, Holyst HA. Flow FP: A Bioconductor Package for Fingerprinting Flow Cytometric Data. Adv Bioinformatics. 2009:193947. doi: 10.1155/2009/193947 . Epub 2009 Sep 24. PubMed PMID: 19956416; PubMed Central PMCID: PMC2777013.
    • (2009) Adv Bioinformatics
    • Rogers, W.T.1    Holyst, H.A.2
  • 43
    • 84928189767 scopus 로고    scopus 로고
    • Flow Density: Reproducing manual gating of flow cytometry data by automated density-based cell population identification
    • Feb 15, Epub 2014 Oct 16. PubMed PMID: 25378466; PubMed Central PMCID: PMC4325545
    • Malek M, Taghiyar MJ, Chong L, Finak G, Gottardo R, Brinkman RR. Flow Density: reproducing manual gating of flow cytometry data by automated density-based cell population identification. Bioinformatics. 2015 Feb 15;31(4):606–7. doi: 10.1093/bioinformatics/ btu677 . Epub 2014 Oct 16. PubMed PMID: 25378466; PubMed Central PMCID: PMC4325545.
    • (2015) Bioinformatics , vol.31 , Issue.4 , pp. 606-607
    • Malek, M.1    Taghiyar, M.J.2    Chong, L.3    Finak, G.4    Gottardo, R.5    Brinkman, R.R.6
  • 45
    • 84860476264 scopus 로고    scopus 로고
    • A computational framework to emulate the human perspective in flow cytometric data analysis
    • Ray S, Pyne S (2012) A computational framework to emulate the human perspective in flow cytometric data analysis. PLoS One 7:e35693
    • (2012) Plos One , vol.7
    • Ray, S.1    Pyne, S.2
  • 46
    • 0034782618 scopus 로고    scopus 로고
    • Model-based clustering and data transformations for gene expression data
    • Yeung KY, Fraley C, Murua A, Raftery AE, Ruzzo WL (2001) Model-based clustering and data transformations for gene expression data. Bioinformatics 17:977–987
    • (2001) Bioinformatics , vol.17 , pp. 977-987
    • Yeung, K.Y.1    Fraley, C.2    Murua, A.3    Raftery, A.E.4    Ruzzo, W.L.5
  • 47
    • 67649488081 scopus 로고    scopus 로고
    • Flow Clust: A bioconductor package for automated gating of flow cytometry data
    • Lo K, Hahne F, Brinkman RR, Gottardo R (2009) Flow Clust: a bioconductor package for automated gating of flow cytometry data. BMC Bioinformatics 10:145
    • (2009) BMC Bioinformatics , vol.10 , pp. 145
    • Lo, K.1    Hahne, F.2    Brinkman, R.R.3    Gottardo, R.4
  • 48
    • 77949555869 scopus 로고    scopus 로고
    • Merging mixture components for cell population identification in flow cytometry
    • Epub 2009 Nov 12. PubMed PMID: 20049161; PubMed Central PMCID: PMC2798116
    • Finak G, Bashashati A, Brinkman R, Gottardo R. Merging mixture components for cell population identification in flow cytometry. Adv Bioinformatics. 2009:247646. doi: 10.1155/2009/247646 . Epub 2009 Nov 12. PubMed PMID: 20049161; PubMed Central PMCID: PMC2798116.
    • (2009) Adv Bioinformatics
    • Finak, G.1    Bashashati, A.2    Brinkman, R.3    Gottardo, R.4
  • 49
    • 84865139571 scopus 로고    scopus 로고
    • Flow Peaks: A fast unsupervised clustering for flow cytometry data via K-means and density peak finding
    • Ge Y, Sealfon SC (2012) Flow Peaks: a fast unsupervised clustering for flow cytometry data via K-means and density peak finding. Bioinformatics 28:2052–2058
    • (2012) Bioinformatics , vol.28 , pp. 2052-2058
    • Ge, Y.1    Sealfon, S.C.2
  • 50
    • 84867434558 scopus 로고    scopus 로고
    • Matching phosphorylation response patterns of antigenreceptor- stimulated T cells via flow cytometry
    • Azad A, Pyne S, Pothen A (2012) Matching phosphorylation response patterns of antigenreceptor- stimulated T cells via flow cytometry. BMC Bioinformatics 13(Suppl 2):S10
    • (2012) BMC Bioinformatics , vol.13 , pp. 10
    • Azad, A.1    Pyne, S.2    Pothen, A.3
  • 52
    • 84899506044 scopus 로고    scopus 로고
    • Enhanced flow Type/ RchyOptimyx: A bioconductor pipeline for discovery in high-dimensional cytometry data
    • O’Neill K, Jalali A, Aghaeepour N, Hoos H, Brinkman RR (2014) Enhanced flow Type/ RchyOptimyx: a bioconductor pipeline for discovery in high-dimensional cytometry data. Bioinformatics 30:1329–1330
    • (2014) Bioinformatics , vol.30 , pp. 1329-1330
    • O’Neill, K.1    Jalali, A.2    Aghaeepour, N.3    Hoos, H.4    Brinkman, R.R.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.