메뉴 건너뛰기




Volumn 31, Issue 4, 2015, Pages 606-607

FlowDensity: Reproducing manual gating of flow cytometry data by automated density-based cell population identification

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL MARKER;

EID: 84928189767     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btu677     Document Type: Article
Times cited : (103)

References (5)
  • 1
    • 84874666550 scopus 로고    scopus 로고
    • Critical assessment of automated flow cytometry data analysis techniques
    • Aghaeepour, N. et al. (2013) Critical assessment of automated flow cytometry data analysis techniques. Nat. Methods, 10, 228-238.
    • (2013) Nat. Methods , vol.10 , pp. 228-238
    • Aghaeepour, N.1
  • 2
    • 84961288133 scopus 로고    scopus 로고
    • PLOS computational biology OpenCyto: An open source infrastructure for scalable, robust, reproducible, and automated end-to-end flow cytometry data analysis
    • Finak, G. et al. (2014) PLOS computational biology OpenCyto: an open source infrastructure for scalable, robust, reproducible, and automated end-to-end flow cytometry data analysis. PLoS Comput. Biol., 10, e1003806.
    • (2014) PLoS Comput. Biol. , vol.10 , pp. e1003806
    • Finak, G.1
  • 3
    • 84888114245 scopus 로고    scopus 로고
    • Application of user-guided automated cytometric data analysis to large-scale immunoprofiling of invariant natural killer T cells
    • Hu, X. et al. (2013) Application of user-guided automated cytometric data analysis to large-scale immunoprofiling of invariant natural killer T cells. Proc. Natl Acad. Sci. USA, 110, 19030-19035.
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 19030-19035
    • Hu, X.1
  • 4
    • 84892763223 scopus 로고    scopus 로고
    • Flow cytometry bioinformatics
    • O'Neill, K. et al. (2013) Flow cytometry bioinformatics. PLoS Comput. Biol., 9, e1003365.
    • (2013) PLoS Comput. Biol. , vol.9 , pp. e1003365
    • O'Neill, K.1
  • 5
    • 77954938186 scopus 로고    scopus 로고
    • Data reduction for spectral clustering to analyze high throughput flow cytometry data
    • Zare, H. et al. (2010) Data reduction for spectral clustering to analyze high throughput flow cytometry data. BMC Bioinformatics, 11, 403.
    • (2010) BMC Bioinformatics , vol.11 , pp. 403
    • Zare, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.